skip to main content


Title: Automated High‐Frequency Geomagnetic Disturbance Classifier: A Machine Learning Approach to Identifying Noise While Retaining High‐Frequency Components of the Geomagnetic Field
Abstract

We present an automated method to identify high‐frequency geomagnetic disturbances in ground magnetometer data and classify the events by the source of the perturbations. We developed an algorithm to search for and identify changes in the surface magnetic field, dB/dt, with user‐specified amplitude and timescale. We used this algorithm to identify transient‐large‐amplitude (TLA) dB/dtevents that have timescale less than 60 s and amplitude >6 nT/s. Because these magnetic variations have similar amplitude and time characteristics to instrumental or man‐made noise, the algorithm identified a large number of noise‐type signatures as well as geophysical signatures. We manually classified these events by their sources (noise‐type or geophysical) and statistically characterized each type of event; the insights gained were used to more specifically define a TLA geophysical event and greatly reduce the number of noise‐type dB/dtidentified. Next, we implemented a support vector machine classification algorithm to classify the remaining events in order to further reduce the number of noise‐type dB/dtin the final data set. We examine the performance of our complete dB/dtsearch algorithm in widely used magnetometer databases and the effect of a common data processing technique on the results. The automated algorithm is a new technique to identify geomagnetic disturbances and instrumental or man‐made noise, enabling systematic identification and analysis of space weather related dB/dtevents and automated detection of magnetometer noise intervals in magnetic field databases.

 
more » « less
Award ID(s):
2013648 1848724 1654044
NSF-PAR ID:
10397045
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
128
Issue:
2
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a comprehensive statistical analysis of high‐frequency transient‐large‐amplitude (TLA) magnetic perturbation events that occurred at 12 high‐latitude ground magnetometer stations throughout Solar Cycle 24 from 2009 to 2019. TLA signatures are defined as one or more second‐timescale dB/dtinterval with magnitude ≥6 nT/s within an hour event window. This study characterizes high‐frequency TLA events based on their spatial and temporal behavior, relation to ring current activity, auroral substorms, and nighttime geomagnetic disturbance (GMD) events. We show that TLA events occur primarily at night, solely in the high‐latitude region above 60° geomagnetic latitude, and commonly within 30 min of substorm onsets. The largest TLA events occurred more often in the declining phase of the solar cycle when ring current activity was lower and solar wind velocity was higher, suggesting association to high‐speed streams caused by coronal holes and subsequent corotating interaction regions reaching Earth. TLA perturbations often occurred preceding or within the most extreme nighttime GMD events that have 5–10 min timescales, but the TLA intervals were often even more localized than the ∼300 km effective scale size of GMDs. We provide evidence that shows TLA‐related GMD events are associated with dipolarization fronts in the magnetotail and fast flows toward Earth and are closely temporally associated with poleward boundary intensifications (PBIs) and auroral streamers. The highly localized behavior and connection to the most extreme GMD events suggests that TLA intervals are a ground manifestation of features within rapid and complex ionospheric structures that can drive geomagnetically induced currents.

     
    more » « less
  2. Abstract

    We present a characterization of transient‐large‐amplitude (TLA) geomagnetic disturbances that are relevant to geomagnetically induced currents (GIC). TLA events are defined as one or more short‐timescale (<60 s) dB/dt signature with magnitude ≥6 nT/s. The TLA events occurred at six stations of the Magnetometer Array for Cusp and Cleft Studies throughout 2015. A semi‐automated dB/dt search algorithm was developed to identify 38 TLA events in the ground magnetometer data. While TLA dB/dts do not drive GICs directly, we show that second‐timescale dB/dts often occur in relation to or within larger impulsive geomagnetic disturbances. Sudden commencements are not the main driver, rather the events are more likely to occur 30 min after a substorm onset or within a nighttime magnetic perturbation event. The characteristics of TLA events suggest localized ionospheric source currents that may play a key role in generating some extreme geomagnetic impulses that can lead to GICs.

     
    more » « less
  3. Abstract

    Nearly all studies of impulsive geomagnetic disturbances (GMDs, also known as magnetic perturbation events MPEs) that can produce dangerous geomagnetically induced currents (GICs) have used data from the northern hemisphere. In this study, we investigated GMD occurrences during the first 6 months of 2016 at four magnetically conjugate high latitude station pairs using data from the Greenland West Coast magnetometer chain and from Antarctic stations in the conjugate AAL‐PIP magnetometer chain. Events for statistical analysis and four case studies were selected from Greenland/AAL‐PIP data by detecting the presence of >6 nT/s derivatives of any component of the magnetic field at any of the station pairs. For case studies, these chains were supplemented by data from the BAS‐LPM chain in Antarctica as well as Pangnirtung and South Pole in order to extend longitudinal coverage to the west. Amplitude comparisons between hemispheres showed (a) a seasonal dependence (larger in the winter hemisphere), and (b) a dependence on the sign of theBycomponent of the interplanetary magnetic field (IMF): GMDs were larger in the north (south) when IMFBywas >0 (<0). A majority of events occurred nearly simultaneously (to within ±3 min) independent of the sign ofByas long as |By| ≤ 2 |Bz|. As has been found in earlier studies, IMFBzwas <0 prior to most events. When IMF data from Geotail, Themis B, and/or Themis C in the near‐Earth solar wind were used to supplement the time‐shifted OMNI IMF data, the consistency of these IMF orientations was improved.

     
    more » « less
  4. Abstract

    Nearly all studies of impulsive magnetic perturbation events (MPEs) with large magnetic field variability (dB/dt) that can produce dangerous geomagnetically induced currents (GICs) have used data from the Northern Hemisphere. Here we present details of four large‐amplitude MPE events (|ΔBx| > 900 nT and |dB/dt| > 10 nT/s in at least one component) observed between 2015 and 2018 in conjugate high‐latitude regions (65–80° corrected geomagnetic latitude), using magnetometer data from (1) Pangnirtung and Iqaluit in eastern Arctic Canada and the magnetically conjugate South Pole Station in Antarctica and (2) the Greenland West Coast Chain and two magnetically conjugate chains in Antarctica, AAL‐PIP and BAS LPM. From one to three different isolated MPEs localized in corrected geomagnetic latitude were observed during three premidnight events; many were simultaneous within 3 min in both hemispheres. Their conjugate latitudinal amplitude profiles, however, matched qualitatively at best. During an extended postmidnight interval, which we associate with an interval of omega bands, multiple highly localized MPEs occurred independently in time at each station in both hemispheres. These nighttime MPEs occurred under a wide range of geomagnetic conditions, but common to each was a negative interplanetary magnetic fieldBzthat exhibited at least a modest increase at or near the time of the event. A comparison of perturbation amplitudes to modeled ionospheric conductances in conjugate hemispheres clearly favored a current generator model over a voltage generator model for three of the four events; neither model provided a good fit for the premidnight event that occurred near vernal equinox.

     
    more » « less
  5. null (Ed.)
    The historical record indicates the possibility of intense coronal mass ejections (CMEs). Energized particles and magnetic fields ejected by coronal mass ejections (CMEs) towards the Earth may disrupt the Earth’s magnetosphere and generate a geomagnetic storm. During a geomagnetic storm, the induced geoelectric field can drive geomagnetically-induced currents (GICs) that flow through ground-based conductors. These GICs have the potential to damage high voltage power transmission systems and cause blackouts. As part of the NSF-funded Comprehensive Hazard Analysis for Resilience to Geomagnetic Extreme Disturbances (CHARGED) project, a solar-wind-to-lithosphere numerical model of the geoelectric field is being developed. The purpose of this new tool is to drive a new generation of GIC forecasting. As a part of that work, Maxwell’s equations, finite-difference time-domain (FDTD) models of the last stage of the Sun-to-Earth propagation path is being coupled to output generated by the Block Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) magnetohydrodynamics model and the Ridley Ionosphere Model (RIM) of ionospheric dynamics. Specifically, three-dimensional (3-D) BATS-R-US and RIM-predicted ionospheric currents occurring in the lower ionosphere during and around the time of the March 17, 2015 storm are modeled in 3-D FDTD models of North America. These models start at a depth of 150 km, and they account for ionospheric currents occurring up to an altitude of 115 km. The resolution of the FDTD models is 22 km (East-West) x 11 km (North-South) x 5 km (radially), and they account for 3-D lithosphere conductivities provided by the U.S. Geological Survey. The FDTD-calculated results are compared with surface magnetic fields measured in the region by SuperMAG and INTERMAGNET magnetometers. The FDTD results are also compared with virtual magnetometer data, which calculates the perturbation of the surface magnetic field using output from the BATS-R-US magnetohydrodynamics model. Comparison plots and an analysis of the results will be provided. 
    more » « less