Extreme (>20 nT/s) geomagnetic disturbances (GMDs, also denoted as MPEs—magnetic perturbation events)—impulsive nighttime disturbances with time scale ∼5–10 min, have sufficient amplitude to cause bursts of geomagnetically induced currents (GICs) that can damage technical infrastructure. In this study, we present occurrence statistics for extreme GMD events from five stations in the MACCS and AUTUMNX magnetometer arrays in Arctic Canada at magnetic latitudes ranging from 65° to 75°. We report all large (≥6 nT/s) and extreme GMDs from these stations from 2011 through 2022 to analyze variations of GMD activity over a full solar cycle and compare them to those found in three earlier studies. GMD activity between 2011 and 2022 did not closely follow the sunspot cycle, but instead was lowest during its rising phase and maximum (2011–2014) and highest during the early declining phase (2015–2017). Most of these GMDs, especially the most extreme, were associated with high‐speed solar wind streams (Vsw >600 km/s) and steady solar wind pressure. All extreme GMDs occurred within 80 min after substorm onsets, but few within 5 min. Multistation data often revealed a poleward progression of GMDs, consistent with a tailward retreat of the magnetotail reconnection region. These observations indicate that extreme GIC hazard conditions can occur for a variety of solar wind drivers and geomagnetic conditions, not only for fast‐coronal mass ejection driven storms.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available January 1, 2025 -
Abstract Dipolarizing flux bundles (DFBs) have been suggested to transport energy and momentum from regions of reconnection in the magnetotail to the high latitude ionosphere, where they can generate localized ionospheric currents that can produce large nighttime geomagnetic disturbances (GMDs). In this study we identified DFBs observed in the midnight sector from ∼7 to ∼10 REby THEMIS A, D, and E during days in 2015–2017 whose northern hemisphere magnetic footpoints mapped to regions near Hudson Bay, Canada, and have compared them to isolated GMDs observed by ground magnetometers. We found 6 days during which one or more of these DFBs coincided to within ±3 min with ≥6 nT/s GMDs observed by latitudinally closely spaced ground‐based magnetometers located near those footpoints. Spherical elementary current systems (SECS) maps and all‐sky imager data provided further characterization of two events, showing short‐lived localized intense upward currents, auroral intensifications and/or streamers, and vortical perturbations of a westward electrojet. On all but one of these days the coincident DFB—GMD pairs occurred during intervals of high‐speed solar wind streams but low values of SYM/H. The observations reported here indicate that isolated DFBs generated under these conditions influence only limited spatial regions nearer Earth. In some events, in which the DFBs were observed closer to Earth and with lower Earthward velocities, the GMDs occurred slightly earlier than the DFBs, suggesting that braking had begun before the time of the DFB observation.
-
Abstract We present a comprehensive statistical analysis of high‐frequency transient‐large‐amplitude (TLA) magnetic perturbation events that occurred at 12 high‐latitude ground magnetometer stations throughout Solar Cycle 24 from 2009 to 2019. TLA signatures are defined as one or more second‐timescale d
B /dt interval with magnitude ≥6 nT/s within an hour event window. This study characterizes high‐frequency TLA events based on their spatial and temporal behavior, relation to ring current activity, auroral substorms, and nighttime geomagnetic disturbance (GMD) events. We show that TLA events occur primarily at night, solely in the high‐latitude region above 60° geomagnetic latitude, and commonly within 30 min of substorm onsets. The largest TLA events occurred more often in the declining phase of the solar cycle when ring current activity was lower and solar wind velocity was higher, suggesting association to high‐speed streams caused by coronal holes and subsequent corotating interaction regions reaching Earth. TLA perturbations often occurred preceding or within the most extreme nighttime GMD events that have 5–10 min timescales, but the TLA intervals were often even more localized than the ∼300 km effective scale size of GMDs. We provide evidence that shows TLA‐related GMD events are associated with dipolarization fronts in the magnetotail and fast flows toward Earth and are closely temporally associated with poleward boundary intensifications (PBIs) and auroral streamers. The highly localized behavior and connection to the most extreme GMD events suggests that TLA intervals are a ground manifestation of features within rapid and complex ionospheric structures that can drive geomagnetically induced currents. -
Abstract Foreshock transient (FT) events are frequently observed phenomena that are generated by discontinuities in the solar wind. These transient events are known to trigger global‐scale magnetic field perturbations (e.g., ULF waves). We report a series of FT events observed by the Magnetospheric Multiscale mission in the upstream bow shock region under quiet solar wind conditions. During the event, ground magnetometers observed significant Pc1 wave activity as well as magnetic impulse events in both hemispheres. Ground Pc1 wave observations show ∼8 min time delay (with some time differences) from each FT event which is observed at the bow shock. We also find that the ground Pc1 waves are observed earlier in the northern hemisphere compared to the southern hemisphere. The observation time difference between the hemispheres implies that the source region of the wave is the off‐equatorial region.
-
Abstract Although lagged correlations have suggested influences of solar wind velocity (
V ) and number density (N ), Bz, ultralow frequency (ULF) wave power, and substorms (as measured by the auroral electrojet (AE) index) on MeV electron flux at geosynchronous orbit over an impressive number of hours and days, a satellite's diurnal cycle can inflate correlations, associations between drivers may produce spurious effects, and correlations between all previous time steps may create an appearance of additive influence over many hours. Autoregressive‐moving average transfer function (ARMAX) multiple regressions incorporating previous hours simultaneously can eliminate cycles and assess the impact of parameters, at each hour, while others are controlled. ARMAX influences are an order of magnitude lower than correlations uncorrected for time behavior. Most influence occurs within a few hours, not the many hours suggested by correlation. A log transformation accounts for nonlinearities. Over all hours, solar wind velocity (V ) and number density (N ) show an initial negative impact, with longer term positive influences over the 9 (V ) or 27 (N ) hr. Bz is initially a positive influence, with a longer term (6 hr) negative effect. ULF waves impact flux in the first (positive) and second (negative) hour before the flux measurement, with further negative influences in the 12–24 hr before. AE (representing electron injection by substorms) shows only a short term (1 hr) positive influence. However, when only recovery and after‐recovery storm periods are considered (using stepwise regression), there are positive influences of ULF waves, AE, andV , with negative influences ofN and Bz. -
Abstract We present an automated method to identify high‐frequency geomagnetic disturbances in ground magnetometer data and classify the events by the source of the perturbations. We developed an algorithm to search for and identify changes in the surface magnetic field, d
B /dt , with user‐specified amplitude and timescale. We used this algorithm to identify transient‐large‐amplitude (TLA) dB /dt events that have timescale less than 60 s and amplitude >6 nT/s. Because these magnetic variations have similar amplitude and time characteristics to instrumental or man‐made noise, the algorithm identified a large number of noise‐type signatures as well as geophysical signatures. We manually classified these events by their sources (noise‐type or geophysical) and statistically characterized each type of event; the insights gained were used to more specifically define a TLA geophysical event and greatly reduce the number of noise‐type dB /dt identified. Next, we implemented a support vector machine classification algorithm to classify the remaining events in order to further reduce the number of noise‐type dB /dt in the final data set. We examine the performance of our complete dB /dt search algorithm in widely used magnetometer databases and the effect of a common data processing technique on the results. The automated algorithm is a new technique to identify geomagnetic disturbances and instrumental or man‐made noise, enabling systematic identification and analysis of space weather related dB /dt events and automated detection of magnetometer noise intervals in magnetic field databases. -
Abstract Nearly all studies of impulsive geomagnetic disturbances (GMDs, also known as magnetic perturbation events MPEs) that can produce dangerous geomagnetically induced currents (GICs) have used data from the northern hemisphere. In this study, we investigated GMD occurrences during the first 6 months of 2016 at four magnetically conjugate high latitude station pairs using data from the Greenland West Coast magnetometer chain and from Antarctic stations in the conjugate AAL‐PIP magnetometer chain. Events for statistical analysis and four case studies were selected from Greenland/AAL‐PIP data by detecting the presence of >6 nT/s derivatives of any component of the magnetic field at any of the station pairs. For case studies, these chains were supplemented by data from the BAS‐LPM chain in Antarctica as well as Pangnirtung and South Pole in order to extend longitudinal coverage to the west. Amplitude comparisons between hemispheres showed (a) a seasonal dependence (larger in the winter hemisphere), and (b) a dependence on the sign of the
By component of the interplanetary magnetic field (IMF): GMDs were larger in the north (south) when IMFBy was >0 (<0). A majority of events occurred nearly simultaneously (to within ±3 min) independent of the sign ofBy as long as |By | ≤ 2 |Bz |. As has been found in earlier studies, IMFBz was <0 prior to most events. When IMF data from Geotail, Themis B, and/or Themis C in the near‐Earth solar wind were used to supplement the time‐shifted OMNI IMF data, the consistency of these IMF orientations was improved. -
Abstract We present a characterization of transient‐large‐amplitude (TLA) geomagnetic disturbances that are relevant to geomagnetically induced currents (GIC). TLA events are defined as one or more short‐timescale (<60 s) dB/dt signature with magnitude ≥6 nT/s. The TLA events occurred at six stations of the Magnetometer Array for Cusp and Cleft Studies throughout 2015. A semi‐automated dB/dt search algorithm was developed to identify 38 TLA events in the ground magnetometer data. While TLA dB/dts do not drive GICs directly, we show that second‐timescale dB/dts often occur in relation to or within larger impulsive geomagnetic disturbances. Sudden commencements are not the main driver, rather the events are more likely to occur 30 min after a substorm onset or within a nighttime magnetic perturbation event. The characteristics of TLA events suggest localized ionospheric source currents that may play a key role in generating some extreme geomagnetic impulses that can lead to GICs.
-
Abstract Simultaneously cycling space weather parameters may show high correlations even if there is no immediate relationship between them. We successfully remove diurnal cycles using spectral subtraction, and remove both diurnal and longer cycles (e.g., the 27 days solar cycle) with a difference transformation. Other methods of diurnal cycle removal (daily averaging, moving averages [MAs], and simpler spectral subtraction using regression) are less successful at removing cycles. We apply spectral subtraction (a finite impulse response equiripple bandstop filter) to hourly electron flux (Los Alamos National Laboratory satellite data) and a ground‐based ULF index to remove a 24 hr noise signal. This results in smoother time series appropriate for short‐term (approximately < 1 week) correlation and observational studies. However, spectral subtraction may not remove longer cycles such as the 27 days and 11 yr solar cycles. A differencing transformation (
y t–y t−24) removes not only the 24 hr noise signal but also the 27 days solar cycle, autocorrelation, and longer trends. This results in a low correlation between electron flux and the ULF index over long periods of time (maximum of 0.1). Correlations of electron flux and the ULF index with solar wind velocity (differenced aty t–y t−1) are also lower than previously reported (≤0.1). An autoregressive, MA transfer function model (ARIMAX) shows that there are significant cumulative effects of solar wind velocity on ULF activity over long periods, but correlations of velocity and ULF waves with flux are only seen over shorter time spans of more homogeneous geomagnetic activity levels. -
Abstract We investigate the timing and relative influence of VLF in the chorus frequency range observed by the DEMETER spacecraft and ULF wave activity from ground stations on daily changes in electron flux (0.23 to over 2.9 MeV) observed by the HEO‐3 spacecraft. At each
L ‐shell, we use multiple regression to investigate the effects of each wave type and each daily lag independent of the others. We find that reduction and enhancement of electrons occur at different timescales. Chorus power spectral density and ULF wave power are associated with immediate electron decreases on the same day but with flux enhancement 1–2 days later. ULF is nearly always more influential than chorus on both increases and decreases of flux, although chorus is often a significant factor. There was virtually no difference in correlations of ULF Pc3, Pc4, or Pc5 with electron flux. A synergistic interaction between chorus and ULF waves means that enhancement is most effective when both waves are present, pointing to a two‐step process where local acceleration by chorus waves first energizes electrons which are then brought to even higher energies by inward radial diffusion due to ULF waves. However, decreases in flux due to these waves act additively. Chorus and ULF waves combined are most effective at describing changes in electron flux at >1.5 MeV. At lowerL (2–3), correlations between ULF and VLF (likely hiss) with electron flux were low. The most successful models, overL = 4–6, explained up to 47.1% of the variation in the data.