skip to main content

Title: WOCS 4540: Detailed Analysis of a very Long Orbital Period Blue Straggler

WOCS 4540 is the longest orbital period (Porb= 3030 days) blue straggler star (BSS)—white dwarf (WD) pair in the old open cluster NGC 188. It also contains one of the most luminous BSS in the cluster. Prior Hubble Space Telescope Cosmic Origins Spectrograph spectroscopy measured a WD mass of 0.53M, indicative of a carbon–oxygen WD and suggesting previous mass transfer from an asymptotic giant branch (AGB) star. Detailed modeling of the system evolution, including red giant branch phase wind mass transfer, AGB wind Roche-lobe overflow, and regular Roche-lobe overflow, is done with Modules for Experiments in Stellar Astrophysics. The best-fit model produces excellent agreement with a wide array of observational constraints on the BSS, the WD, and the binary system. To produce the observed luminosity and effective temperature of the BSS, all three donor mass-transfer mechanisms contribute similarly to build a 1.5MBSS. The overall mass-transfer efficiency is 55%. Regular Roche-lobe overflow occurs only during the largest AGB thermal pulse, but yields a very high accretion rate at 75% efficiency and briefly (less than 1 Myr) a very high luminosity boost from the accretor.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Page Range / eLocation ID:
Article No. 89
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The detonation of an overlying helium layer on a 0.8–1.1Mcarbon–oxygen (CO) white dwarf (WD) can detonate the CO WD and create a thermonuclear supernova (SN). Many authors have recently shown that when the mass of the He layer is low (≲0.03M), the ashes from its detonation minimally impact the spectra and light curve from the CO detonation, allowing the explosion to appear remarkably similar to Type Ia SNe. These new insights motivate our investigation of dynamical He shell burning and our search for a binary scenario that stably accumulates thermally unstable He shells in the 0.01–0.08Mrange, thick enough to detonate, but also often thin enough for minimal impact on the observables. We first show that our improved nonadiabatic evolution of convective He shell burning in this range of shell mass leads to conditions ripe for a He detonation. We also find that a stable mass transfer scenario with a high-entropy He WD donor of mass 0.15–0.25Myields the He shell masses needed to achieve the double detonations. This scenario also predicts that the surviving He donor leaves with a spatial velocity consistent with the unusual runaway object, D6-2. We find that hot He WD donors originate in common-envelope events when a 1.3–2.0Mstar fills its Roche lobe at the base of the red giant branch at orbital periods of 1–10 days with the CO WD.

    more » « less
  2. Abstract We use photometry and proper motions from Gaia DR2 to determine the blue straggler star (BSS) populations of 16 old (1–10 Gyr), nearby ( d < 3500 pc) open clusters. We find that the fractional number of BSS compared to red giant branch stars increases with age, starting near zero at 1 Gyr and flattening to ∼0.35 by 4 Gyr. Fitting stellar evolutionary tracks to these BSSs, we find that their mass distribution peaks at a few tenths of a solar mass above the main-sequence turnoff. BSSs more than 0.5 M ⊙ above the turnoff make up only ∼25% of the sample, and BSSs more than 1.0 M ⊙ above the turnoff are rare. We compare this to Compact Object Synthesis and Monte Carlo Investigation Code population synthesis models of BSSs formed via mass transfer. We find that standard population synthesis assumptions dramatically under-produce the number of BSS in old open clusters. We also find that these models overproduce high-mass BSSs relative to lower-mass BSSs. The expected number of BSSs formed through dynamics do not fully account for this discrepancy. We conclude that in order to explain the observed BSS populations from Roche lobe overflow, mass transfer from giant donors must be more stable than assumed in canonical mass-transfer prescriptions, and including nonconservative mass transfer is important in producing realistic BSS masses. Even with these modifications, it is difficult to achieve the large number of BSSs observed in the oldest open clusters. We discuss some additional physics that may explain the large number of observed blue stragglers among old stellar populations. 
    more » « less

    Binaries consisting of a hot subdwarf star and an accreting white dwarf (WD) are sources of gravitational wave radiation at low frequencies and possible progenitors of Type Ia supernovae if the WD mass is large enough. Here, we report the discovery of the third binary known of this kind: It consists of a hot subdwarf O (sdO) star and a WD with an orbital period of 3.495 h and an orbital shrinkage of 0.1 s in 6 yr. The sdO star overfills its Roche lobe and likely transfers mass to the WD via an accretion disc. From spectroscopy, we obtain an effective temperature of $T_{\mathrm{eff}}=54\, 240\pm 1840$ K and a surface gravity of log g = 4.841 ± 0.108 for the sdO star. From the light curve analysis, we obtain an sdO mass of MsdO = 0.55 M⊙ and a mass ratio of q = MWD/MsdO = 0.738 ± 0.001. Also, we estimate that the disc has a radius of $\sim\!0.41\ \mathrm{R}_\odot$ and a thickness of $\sim\!0.18\ \mathrm{R}_\odot$. The origin of this binary is probably a common envelope ejection channel, where the progenitor of the sdO star is either a red giant branch star or, more likely, an early asymptotic giant branch star; the sdO star will subsequently evolve into a WD and merge with its WD companion, likely resulting in an R Coronae Borealis (R CrB) star. The outstanding feature in the spectrum of this object is strong Ca H&K lines, which are blueshifted by ∼200 km s−1 and likely originate from the recently ejected common envelope, and we estimated that the remnant common envelope (CE) material in the binary system has a density $\sim\!6\times 10^{-10}\ {\rm g\, cm}^{-3}$.

    more » « less
  4. Abstract

    About ten percent of Sun-like (1–2M) stars will engulf a 1–10MJplanet as they expand during the red giant branch (RGB) or asymptotic giant branch (AGB) phase of their evolution. Once engulfed, these planets experience a strong drag force in the star’s convective envelope and spiral inward, depositing energy and angular momentum. For these mass ratios, the inspiral takes ∼10–102yr (∼102–103orbits); the planet undergoes tidal disruption at a radius of ∼1R. We use the Modules for Experiments in Stellar Astrophysics (MESA) software instrument to track the stellar response to the energy deposition while simultaneously evolving the planetary orbit. For RGB stars, as well as AGB stars withMp≲ 5MJplanets, the star responds quasi-statically but still brightens measurably on a timescale of years. In addition, asteroseismic indicators, such as the frequency spacing or rotational splitting, differ before and after engulfment. For AGB stars, engulfment of anMp≳ 5MJplanet drives supersonic expansion of the envelope, causing a bright, red, dusty eruption similar to a “luminous red nova.” Based on the peak luminosity, color, duration, and expected rate of these events, we suggest that engulfment events on the AGB could be a significant fraction of low-luminosity red novae in the Galaxy. We do not find conditions where the envelope is ejected prior to the planet’s tidal disruption, complicating the interpretation of short-period giant planets orbiting white dwarfs as survivors of common envelope evolution.

    more » « less
  5. Abstract

    Gravitational-wave detectors are starting to reveal the redshift evolution of the binary black hole (BBH) merger rate,RBBH(z). We make predictions forRBBH(z) as a function of black hole mass for systems originating from isolated binaries. To this end, we investigate correlations between the delay time and black hole mass by means of the suite of binary population synthesis simulations,COMPAS. We distinguish two channels: the common envelope (CE), and the stable Roche-lobe overflow (RLOF) channel, characterized by whether the system has experienced a common envelope or not. We find that the CE channel preferentially produces BHs with masses below about 30Mand short delay times (tdelay≲ 1 Gyr), while the stable RLOF channel primarily forms systems with BH masses above 30Mand long delay times (tdelay≳ 1 Gyr). We provide a new fit for the metallicity-dependent specific star formation rate density based on the Illustris TNG simulations, and use this to convert the delay time distributions into a prediction ofRBBH(z). This leads to a distinct redshift evolution ofRBBH(z) for high and low primary BH masses. We furthermore find that, at high redshift,RBBH(z) is dominated by the CE channel, while at low redshift, it contains a large contribution (∼40%) from the stable RLOF channel. Our results predict that, for increasing redshifts, BBHs with component masses above 30Mwill become increasingly scarce relative to less massive BBH systems. Evidence of this distinct evolution ofRBBH(z) for different BH masses can be tested with future detectors.

    more » « less