Abstract Accretion rates ( ) of young stars show a strong correlation with object mass (M); however, extension of the relation into the substellar regime is less certain. Here, we present the Comprehensive Archive of Substellar and Planetary Accretion Rates (CASPAR), the largest compilation to date of substellar accretion diagnostics. CASPAR includes: 658 stars, 130 brown dwarfs, and 10 bound planetary mass companions. In this work, we investigate the contribution of methodological systematics to scatter in the relation and compare brown dwarfs to stars. In our analysis, we rederive all quantities using self-consistent models, distances, and empirical line flux to accretion luminosity scaling relations to reduce methodological systematics. This treatment decreases the original 1σscatter in the relation by ∼17%, suggesting that it makes only a small contribution to the dispersion. The CASPAR rederived values are best fit by from 10MJto 2M⊙, confirming previous results. However, we argue that the brown-dwarf and stellar populations are better described separately and by accounting for both mass and age. Therefore, we derive separate age-dependent relations for these regions and find a steepening in the brown-dwarf slope with age. Within this mass regime, the scatter decreases from 1.36 dex to 0.94 dex, a change of ∼44%. This result highlights the significant role that evolution plays in the overall spread of accretion rates, and suggests that brown dwarfs evolve faster than stars, potentially as a result of different accretion mechanisms.
more »
« less
1RXH J082623.6–505741: A New Long-period Cataclysmic Variable with an Evolved Donor and a Low Mass-transfer Rate
Abstract We report the discovery of 1RXH J082623.6−505741, a 10.4 hr orbital period compact binary. Modeling extensive optical photometry and spectroscopy reveals a ∼0.4M⊙K-type secondary transferring mass through a low-state accretion disk to a nonmagnetic ∼0.8M⊙white dwarf. The secondary is overluminous for its mass and dominates the optical spectra at all epochs and must be evolved to fill its Roche Lobe at this orbital period. The X-ray luminosityLX∼ 1–2 × 1032erg s−1derived from both new XMM-Newton and archival observations, although high compared to most CVs, still only requires a modest accretion rate onto the white dwarf of ∼ 3 × 10−11to 3 × 10−10M⊙yr−1, lower than expected for a cataclysmic variable with an evolved secondary. No dwarf nova outbursts have yet been observed from the system, consistent with the low derived mass-transfer rate. Several other cataclysmic variables with similar orbital periods also show unexpectedly low mass-transfer rates, even though selection effects disfavor the discovery of binaries with these properties. This suggests the abundance and evolutionary state of long-period, low mass-transfer rate cataclysmic variables are worthy of additional attention.
more »
« less
- Award ID(s):
- 1751874
- PAR ID:
- 10486142
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 934
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 142
- Size(s):
- Article No. 142
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report the discovery of three ultracompact binary white dwarf systems hosting accretion disks, with orbital periods of 7.95, 8.68, and 13.15 minutes. This significantly augments the population of mass-transferring binaries at the shortest periods, and provides the first evidence that accretors in ultracompacts can be dense enough to host accretion disks even below 10 minutes (where previously only direct-impact accretors were known). In the two shortest-period systems, we measured changes in the orbital periods driven by the combined effect of gravitational-wave emission and mass transfer. We find is negative in one case, and positive in the other. This is only the second system measured with a positive , and it is the most compact binary known that has survived a period minimum. Using these systems as examples, we show how the measurement of is a powerful tool in constraining the physical properties of binaries, e.g., the mass and mass–radius relation of the donor stars. We find that the chirp masses of ultracompact binaries at these periods seem to cluster around , perhaps suggesting a common origin for these systems or a selection bias in electromagnetic discoveries. Our new systems are among the highest-amplitude known gravitational-wave sources in the millihertz regime, providing an exquisite opportunity for multimessenger study with future space-based observatories such as LISA and TianQin. We discuss how such systems provide fascinating laboratories to study the unique regime where the accretion process is mediated by gravitational waves.more » « less
-
Abstract Fueling and feedback couple supermassive black holes (SMBHs) to their host galaxies across many orders of magnitude in spatial and temporal scales, making this problem notoriously challenging to simulate. We use a multi-zone computational method based on the general relativistic magnetohydrodynamic (GRMHD) code KHARMA that allows us to span 7 orders of magnitude in spatial scale, to simulate accretion onto a non-spinning SMBH from an external medium with a Bondi radius ofRB≈ 2 × 105GM•/c2, whereM•is the SMBH mass. For the classic idealized Bondi problem, spherical gas accretion without magnetic fields, our simulation results agree very well with the general relativistic analytic solution. Meanwhile, when the accreting gas is magnetized, the SMBH magnetosphere becomes saturated with a strong magnetic field. The density profile varies as ∼r−1rather thanr−3/2and the accretion rate is consequently suppressed by over 2 orders of magnitude below the Bondi rate . We find continuous energy feedback from the accretion flow to the external medium at a level of . Energy transport across these widely disparate scales occurs via turbulent convection triggered by magnetic field reconnection near the SMBH. Thus, strong magnetic fields that accumulate on horizon scales transform the flow dynamics far from the SMBH and naturally explain observed extremely low accretion rates compared to the Bondi rate, as well as at least part of the energy feedback.more » « less
-
Abstract The recurrent nova T Pyxidis (T Pyx) has erupted six times since 1890, with its last outburst in 2011, and the relatively short recurrence time between classical nova explosions indicates that T Pyx must have a massive white dwarf (WD) accreting at a high rate. It is believed that, since its outburst in 1890, the mass transfer rate in T Pyx was very large due to a feedback loop where the secondary is heated by the hot WD. The feedback loop has been slowly shutting off, reducing the mass transfer rate, and thereby explaining the magnitude decline of T Pyx from ∼13.8 (before 1890) to 15.7 just before the 2011 eruption. We present an analysis of the latest Hubble Space Telescope far-ultraviolet and optical spectra, obtained 12 yr after the 2011 outburst, showing that the mass transfer rate has been steadily declining and is now below its preoutburst level by about 40%: yr−1for a WD mass of ∼1.0–1.4M⊙, an inclination of 50°–60°, reddening ofE(B−V) = 0.30 ± 0.05, and a Gaia Data Release 3 distance of pc. This steady decrease in the mass transfer rate in the ∼decade after the 2011 outburst is in sharp contrast with the more constant preoutburst ultraviolet continuum flux level from archival International Ultraviolet Explorer spectra. The flux (i.e., ) decline rate is 29 times faster now in the last ∼decade than observed since 1890 to ∼2010. The feedback loop shut off seems to be accelerating, at least in the decade following its 2011 outburst. In all eventualities, our analysis confirms that T Pyx is going through an unusually peculiar short-lived phase.more » « less
-
Abstract The growth of supermassive black holes is strongly linked to their galaxies. It has been shown that the population mean black hole accretion rate ( ) primarily correlates with the galaxy stellar mass (M⋆) and redshift for the general galaxy population. This work aims to provide the best measurements of as a function ofM⋆and redshift over ranges of 109.5<M⋆< 1012M⊙andz< 4. We compile an unprecedentedly large sample with 8000 active galactic nuclei (AGNs) and 1.3 million normal galaxies from nine high-quality survey fields following a wedding cake design. We further develop a semiparametric Bayesian method that can reasonably estimate and the corresponding uncertainties, even for sparsely populated regions in the parameter space. is constrained by X-ray surveys sampling the AGN accretion power and UV-to-infrared multiwavelength surveys sampling the galaxy population. Our results can independently predict the X-ray luminosity function (XLF) from the galaxy stellar mass function (SMF), and the prediction is consistent with the observed XLF. We also try adding external constraints from the observed SMF and XLF. We further measure for star-forming and quiescent galaxies and show that star-forming is generally larger than or at least comparable to the quiescent .more » « less