Abstract Atomically thin transition metal dichalcogenides (TMDs), like MoS 2 with high carrier mobilities and tunable electron dispersions, are unique active material candidates for next generation opto-electronic devices. Previous studies on ion irradiation show great potential applications when applied to two-dimensional (2D) materials, yet have been limited to micron size exfoliated flakes or smaller. To demonstrate the scalability of this method for industrial applications, we report the application of relatively low power (50 keV) 4 He + ion irradiation towards tuning the optoelectronic properties of an epitaxially grown continuous film of MoS 2 at the wafer scale, and demonstrate that precise manipulation of atomistic defects can be achieved in TMD films using ion implanters. The effect of 4 He + ion fluence on the PL and Raman signatures of the irradiated film provides new insights into the type and concentration of defects formed in the MoS 2 lattice, which are quantified through ion beam analysis. PL and Raman spectroscopy indicate that point defects are generated without causing disruption to the underlying lattice structure of the 2D films and hence, this technique can prove to be an effective way to achieve defect-mediated control over the opto-electronic properties of MoS 2 and other 2D materials.
more »
« less
This content will become publicly available on December 1, 2025
Tailoring amorphous boron nitride for high-performance two-dimensional electronics
Abstract Two-dimensional (2D) materials have garnered significant attention in recent years due to their atomically thin structure and unique electronic and optoelectronic properties. To harness their full potential for applications in next-generation electronics and photonics, precise control over the dielectric environment surrounding the 2D material is critical. The lack of nucleation sites on 2D surfaces to form thin, uniform dielectric layers often leads to interfacial defects that degrade the device performance, posing a major roadblock in the realization of 2D-based devices. Here, we demonstrate a wafer-scale, low-temperature process (<250 °C) using atomic layer deposition (ALD) for the synthesis of uniform, conformal amorphous boron nitride (aBN) thin films. ALD deposition temperatures between 125 and 250 °C result in stoichiometric films with high oxidative stability, yielding a dielectric strength of 8.2 MV/cm. Utilizing a seed-free ALD approach, we form uniform aBN dielectric layers on 2D surfaces and fabricate multiple quantum well structures of aBN/MoS2and aBN-encapsulated double-gated monolayer (ML) MoS2field-effect transistors to evaluate the impact of aBN dielectric environment on MoS2optoelectronic and electronic properties. Our work in scalable aBN dielectric integration paves a way towards realizing the theoretical performance of 2D materials for next-generation electronics.
more »
« less
- Award ID(s):
- 1539916
- PAR ID:
- 10584843
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For continual scaling in microelectronics, new processes for precise high volume fabrication are required. Area-selective atomic layer deposition (ASALD) can provide an avenue for self-aligned material patterning and offers an approach to correct edge placement errors commonly found in top-down patterning processes. Two-dimensional transition metal dichalcogenides also offer great potential in scaled microelectronic devices due to their high mobilities and few-atom thickness. In this work, we report ASALD of MoS2 thin films by deposition with MoF6 and H2S precursor reactants. The inherent selectivity of the MoS2 atomic layer deposition (ALD) process is demonstrated by growth on common dielectric materials in contrast to thermal oxide/ nitride substrates. The selective deposition produced few layer MoS2 films on patterned growth regions as measured by Raman spectroscopy and time-of-flight secondary ion mass spectrometry. We additionally demonstrate that the selectivity can be enhanced by implementing atomic layer etching (ALE) steps at regular intervals during MoS2 growth. This area-selective ALD process provides an approach for integrating 2D films into next-generation devices by leveraging the inherent differences in surface chemistries and providing insight into the effectiveness of a supercycle ALD and ALE process.more » « less
-
Low temperature synthesis of high quality two-dimensional (2D) materials directly on flexible substrates remains a fundamental limitation towards scalable realization of robust flexible electronics possessing the unique physical properties of atomically thin structures. Herein, we describe room temperature sputtering of uniform, stoichiometric amorphous MoS 2 and subsequent large area (>6.25 cm 2 ) photonic crystallization of 5 nm 2H-MoS 2 films in air to enable direct, scalable fabrication of ultrathin 2D photodetectors on stretchable polydimethylsiloxane (PDMS) substrates. The lateral photodetector devices demonstrate an average responsivity of 2.52 μW A −1 and a minimum response time of 120 ms under 515.6 nm illumination. Additionally, the surface wrinkled, or buckled, PDMS substrate with conformal MoS 2 retained the photoconductive behavior at tensile strains as high as 5.72% and over 1000 stretching cycles. The results indicate that the photonic crystallization method provides a significant advancement in incorporating high quality semiconducting 2D materials applied directly on polymer substrates for wearable and flexible electronic systems.more » « less
-
The emerging optoelectronic material family of transition metal dichalcogenides may be useful in flexible electronics. However, only MoS2 has been grown directly as thin films on polymer substrates, owing in part to the high deposition temperatures typically required to prepare these materials. Changing vapor deposition chemistry can allow much lower film growth temperatures. We show that when using tetrakis(dimethylamido)zirconium(IV), Zr(NMe2)4, and H2S as precursors, low-temperature chemical vapor deposition affords films of zirconium(IV) sulfide (ZrS2) directly on polymer substrates. Stoichiometric and crystalline ZrS2 films can be deposited with good adhesion on polyimide (Kapton) and polyether ether ketone (PEEK) substrates at 150–200 °C. The films deposited on polydimethylsiloxane (PDMS) substrates were stoichiometric and crystalline, but not well adhered. Films on all substrates were polycrystalline with small (20–30 nm) grains, highly oriented in the [001] direction of the 1T ZrS2 phase. The films grown on PEEK have resistivities ca. 625 Ω cm, two orders of magnitude higher than ZrS2 films deposited at 800–1000 °C from ZrCl4 and sulfur. The films grown on Kapton are similarly conductive, whereas films on PDMS are not conductive.more » « less
-
To enable greater control over thermal atomic layer deposition (ALD) of molybdenum disulfide (MoS 2 ), here we report studies of the reactions of molybdenum hexafluoride (MoF 6 ) and hydrogen sulfide (H 2 S) with metal oxide substrates from nucleation to few-layer films. In situ quartz crystal microbalance experiments performed at 150, 200, and 250 °C revealed temperature-dependent nucleation behavior of the MoF 6 precursor, which is attributed to variations in surface hydroxyl concentration with temperature. In situ Fourier transform infrared spectroscopy coupled with ex situ x-ray photoelectron spectroscopy (XPS) indicated the presence of molybdenum oxide and molybdenum oxyfluoride species during nucleation. Density functional theory calculations additionally support the formation of these species as well as predicted metal oxide to fluoride conversion. Residual gas analysis revealed reaction by-products, and the combined experimental and computational results provided insights into proposed nucleation surface reactions. With additional ALD cycles, Fourier transform infrared spectroscopy indicated steady film growth after ∼13 cycles at 200 °C. XPS revealed that higher deposition temperatures resulted in a higher fraction of MoS 2 within the films. Deposition temperature was found to play an important role in film morphology with amorphous films obtained at 200 °C and below, while layered films with vertical platelets were observed at 250 °C. These results provide an improved understanding of MoS 2 nucleation, which can guide surface preparation for the deposition of few-layer films and advance MoS 2 toward integration into device manufacturing.more » « less
An official website of the United States government
