skip to main content


Title: Important Ice Processes Are Missed by the Community Earth System Model in Southern Ocean Mixed‐Phase Clouds: Bridging SOCRATES Observations to Model Developments
Abstract

Global climate models (GCMs) are challenged by difficulties in simulating cloud phase and cloud radiative effect over the Southern Ocean (SO). Some of the new‐generation GCMs predict too much liquid and too little ice in mixed‐phase clouds. This misrepresentation of cloud phase in GCMs results in weaker negative cloud feedback over the SO and a higher climate sensitivity. Based on a model comparison with observational data obtained during the Southern Ocean Cloud Radiation and Aerosol Transport Experimental Study, this study addresses a key uncertainty in the Community Earth System Model version 2 (CESM2) related to cloud phase, namely ice formation in pristine remote SO clouds. It is found that sea spray organic aerosols (SSOAs) are the most important type of ice nucleating particles (INPs) over the SO with concentrations 1 order of magnitude higher than those of dust INPs based on measurements and CESM2 simulations. Secondary ice production (SIP) which includes riming splintering, rain droplet shattering, and ice‐ice collisional fragmentation as implemented in CESM2 is the dominant ice production process in moderately cold clouds with cloud temperatures greater than −20°C. SIP enhances the in‐cloud ice number concentrations (Ni) by 1–3 orders of magnitude and predicts more mixed‐phase (with percentage occurrence increased from 15% to 21%), in better agreement with the observations. This study highlights the importance of accurately representing the cloud phase over the pristine remote SO by considering the ice nucleation of SSOA and SIP processes, which are currently missing in most GCM cloud microphysics parameterizations.

 
more » « less
Award ID(s):
1744965
NSF-PAR ID:
10397232
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
128
Issue:
4
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Southern Ocean (SO) low‐level mixed phase clouds have been a long‐standing challenge for Earth system models to accurately represent. While improvements to the Community Earth System Model version 2 (CESM2) resulted in increased supercooled liquid in SO clouds and improved model radiative biases, simulated SO clouds in CESM2 now contain too little ice. Previous observational studies have indicated that marine particles are major contributor to SO low‐level cloud heterogeneous ice nucleation, a process that initiates a number of cloud processes that govern cloud radiative properties. In this study, we utilize detailed aerosol and ice nucleating particle (INP) measurements from two recent measurement campaigns to assess simulated aerosol abundance, number size distributions, and composition and INP parameterizations for use in CESM2. Our results indicate that CESM2 has a positive bias in simulated surface‐level total aerosol surface area at latitudes north of 58°S. Measured INP populations were dominated by marine INPs and we present evidence of refractory INPs present over the SO assumed here to be mineral dust INPs. Results highlight a critical need to assess simulated mineral dust number and size distributions in CESM2 in order to adequately represent SO INP populations and their response to long‐term changes in atmospheric transport patterns and land use change. We also discuss important cautions and limitations in applying a commonly used mineral dust INP parameterization to remote regions like the pristine SO.

     
    more » « less
  2. Abstract

    Maritime boundary‐layer clouds over the Southern Ocean (SO) have a large shortwave radiative effect. Yet, climate models have difficulties in representing these clouds and, especially, their phase in this observationally sparse region. This study aims to increase the knowledge of SO cloud phase by presenting in‐situ cloud microphysical observations from the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study (SOCRATES). We investigate the occurrence of ice in summertime marine stratocumulus and cumulus clouds in the temperature range between 6 and −25°C. Our observations show that in ice‐containing clouds, maximum ice number concentrations of up to several hundreds per liter were found. The observed ice crystal concentrations were on average one to two orders of magnitude higher than the simultaneously measured ice nucleating particle (INP) concentrations in the temperature range below −10°C and up to five orders of magnitude higher than estimated INP concentrations in the temperature range above −10°C. These results highlight the importance of secondary ice production (SIP) in SO summertime marine boundary‐layer clouds. Evidence for rime splintering was found in the Hallett‐Mossop (HM) temperature range but the exact SIP mechanism active at lower temperatures remains unclear. Finally, instrument simulators were used to assess simulated co‐located cloud ice concentrations and the role of modeled HM rime‐splintering. We found that CAM6 is deficient in simulating number concentrations across the HM temperature range with little sensitivity to the model HM process, which is inconsistent with the aforementioned observational evidence of highly active SIP processes in SO low‐level clouds.

     
    more » « less
  3. Abstract

    Climate models struggle to accurately represent the highly reflective boundary layer clouds overlying the remote and stormy Southern Ocean. We use in situ aircraft observations from the Southern Ocean Clouds, Radiation and Aerosol Transport Experimental Study (SOCRATES) to evaluate Southern Ocean clouds in a cloud‐resolving large‐eddy simulation (LES) and two coarse resolution global atmospheric models, the CESM Community Atmosphere Model (CAM6) and the GFDL Atmosphere Model (AM4), run in a nudged hindcast framework. We develop six case studies from SOCRATES data which span the range of observed cloud and boundary layer properties. For each case, the LES is run once forced purely using reanalysis data (fifth generation European Centre for Medium‐Range Weather Forecasts atmospheric reanalysis, “ERA5 based”) and once strongly nudged to an aircraft profile(“Obs based”). The ERA5‐based LES can be compared with the global models, which are also nudged to reanalysis data and are better for simulating cumulus. The Obs‐based LES closely matches an observed cloud profile and is useful for microphysical comparisons and sensitivity tests and simulating multilayer stratiform clouds. We use two‐moment Morrison microphysics in the LES and find that it simulates too few frozen particles in clouds occurring within the Hallett‐Mossop temperature range. We tweak the Hallett‐Mossop parameterization so that it activates within boundary layer clouds, and we achieve better agreement between observed and simulated microphysics. The nudged global climate models (GCMs) simulate liquid‐dominated mixed‐phase clouds in the stratiform cases but excessively glaciate cumulus clouds. Both GCMs struggle to represent two‐layer clouds, and CAM6 has low droplet concentrations in all cases and underpredicts stratiform cloud‐driven turbulence.

     
    more » « less
  4. Abstract

    The abundance and sources of ice‐nucleating particles, particles required for heterogeneous ice nucleation, are long‐standing sources of uncertainty in quantifying aerosol‐cloud interactions. In this study, we demonstrate near closure between immersion freezing ice‐nucleating particle number concentration (nINPs) observations andnINPscalculated from simulated sea spray aerosol and dust. The Community Atmospheric Model with constrained meteorology was used to simulate aerosol concentrations at the Mace Head Research Station (North Atlantic) and over the Southern Ocean to the south of Tasmania (Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign). Model‐predictednINPswere within a factor of 10 ofnINPsobserved with an off‐line ice spectrometer at Mace Head Research Station and Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign, for 93% and 69% of observations, respectively. Simulated vertical profiles ofnINPsreveal that transported dust may be critical tonINPsin remote regions and that sea spray aerosol may be the dominate contributor to primary ice nucleation in Southern Ocean low‐level mixed‐phase clouds.

     
    more » « less
  5. null (Ed.)
    Abstract Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation and radiative processes, and their interactions. Projects between 2016 and 2018 used in-situ probes, radar, lidar and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN) and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase cloudsnucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF/NCAR G-V aircraft flying north-south gradients south of Tasmania, at Macquarie Island, and on the RV Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show a largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multi-layered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets. 
    more » « less