skip to main content


Title: Observations of clouds, aerosols, precipitation, and surface radiation over the Southern Ocean: An overview of CAPRICORN, MARCUS, MICRE and SOCRATES
Abstract Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation and radiative processes, and their interactions. Projects between 2016 and 2018 used in-situ probes, radar, lidar and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN) and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase cloudsnucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF/NCAR G-V aircraft flying north-south gradients south of Tasmania, at Macquarie Island, and on the RV Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show a largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multi-layered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets.  more » « less
Award ID(s):
1660605 1660509 1660374 1660537 1660604 1660486
NSF-PAR ID:
10214658
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
ISSN:
0003-0007
Page Range / eLocation ID:
1 to 92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Global climate models (GCMs) are challenged by difficulties in simulating cloud phase and cloud radiative effect over the Southern Ocean (SO). Some of the new‐generation GCMs predict too much liquid and too little ice in mixed‐phase clouds. This misrepresentation of cloud phase in GCMs results in weaker negative cloud feedback over the SO and a higher climate sensitivity. Based on a model comparison with observational data obtained during the Southern Ocean Cloud Radiation and Aerosol Transport Experimental Study, this study addresses a key uncertainty in the Community Earth System Model version 2 (CESM2) related to cloud phase, namely ice formation in pristine remote SO clouds. It is found that sea spray organic aerosols (SSOAs) are the most important type of ice nucleating particles (INPs) over the SO with concentrations 1 order of magnitude higher than those of dust INPs based on measurements and CESM2 simulations. Secondary ice production (SIP) which includes riming splintering, rain droplet shattering, and ice‐ice collisional fragmentation as implemented in CESM2 is the dominant ice production process in moderately cold clouds with cloud temperatures greater than −20°C. SIP enhances the in‐cloud ice number concentrations (Ni) by 1–3 orders of magnitude and predicts more mixed‐phase (with percentage occurrence increased from 15% to 21%), in better agreement with the observations. This study highlights the importance of accurately representing the cloud phase over the pristine remote SO by considering the ice nucleation of SSOA and SIP processes, which are currently missing in most GCM cloud microphysics parameterizations.

     
    more » « less
  2. Abstract

    The persistent Southern Ocean (SO) shortwave radiation biases in climate models and reanalyses have been associated with the poor representation of clouds, precipitation, aerosols, the atmospheric boundary layer, and their intrinsic interactions. Capitalizing on shipborne observations collected during the Clouds Aerosols Precipitation Radiation and atmospheric Composition Over the Southern Ocean 2016 and 2018 field campaigns, this research investigates and characterizes cloud and precipitation processes from synoptic to micro scales. Distinct cloud and precipitation regimes are found to correspond to the seven thermodynamic clusters established using a K‐means clustering technique, while less distinctions are evident using the cyclone and (cold) front compositing methods. Cloud radar and disdrometer data reveal that light precipitation is common over the SO with higher intensities associated with cyclonic and warm frontal regions. Multiple lines of evidence suggest the presence of diverse microphysical features in several cloud regimes, including the likely dominance of ice aggregation in deep precipitating clouds. Signatures of mixed phase, and in some cases, riming were detected in shallow convective clouds away from the frontal conditions. Two of the K‐means clusters with contrasting cloud and precipitation properties are observed over the high‐latitude SO and coastal Antarctica, suggesting distinct physical processes therein. Through a single case study, in‐situ and remote‐sensing data collected by an overflight of the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study were also evaluated and complement the ship‐based analysis.

     
    more » « less
  3. Abstract

    This study presents the first numerical simulations of seeded clouds over the Snowy Mountains of Australia. WRF-WxMod, a novel glaciogenic cloud-seeding model, was utilized to simulate the cloud response to winter orographic seeding under various meteorological conditions. Three cases during the 2018 seeding periods were selected for model evaluation, coinciding with an intensive ground-based measurement campaign. The campaign data were used for model validation and evaluation. Comparisons between simulations and observations demonstrate that the model realistically represents cloud structures, liquid water path, and precipitation. Sensitivity tests were performed to pinpoint key uncertainties in simulating natural and seeded clouds and precipitation processes. They also shed light on the complex interplay between various physical parameters/processes and their interaction with large-scale meteorology. Our study found that in unseeded scenarios, the warm and cold biases in different initialization datasets can heavily influence the intensity and phase of natural precipitation. Secondary ice production via Hallett–Mossop processes exerts a secondary influence. On the other hand, the seeding impacts are primarily sensitive to aerosol conditions and the natural ice nucleation process. Both factors alter the supercooled liquid water availability and the precipitation phase, consequently impacting the silver iodide (AgI) nucleation rate. Furthermore, model sensitivities were inconsistent across cases, indicating that no single model configuration optimally represents all three cases. This highlights the necessity of employing an ensemble approach for a more comprehensive and accurate assessment of the seeding impact.

    Significance Statement

    Winter orographic cloud seeding has been conducted for decades over the Snowy Mountains of Australia for securing water resources. However, this study is the first to perform cloud-seeding simulation for a robust, event-based seeding impact evaluation. A state-of-the-art cloud-seeding model (WRF-WxMod) was used to simulate the cloud seeding and quantified its impact on the region. The Southern Hemisphere, due to low aerosol emissions and highly pristine cloud conditions, has distinctly different cloud microphysical characteristics than the Northern Hemisphere, where WRF-WxMod has been successfully applied in a few regions over the United States. The results showed that WRF-WxMod could accurately capture the clouds and precipitation in both the natural and seeded conditions.

     
    more » « less
  4. Abstract. Mixed-phase Southern Ocean clouds are challenging to simulate, and theirrepresentation in climate models is an important control on climatesensitivity. In particular, the amount of supercooled water and frozen massthat they contain in the present climate is a predictor of their planetaryfeedback in a warming climate. The recent Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) vastly increased theamount of in situ data available from mixed-phase Southern Ocean clouds usefulfor model evaluation. Bulk measurements distinguishing liquid and ice watercontent are not available from SOCRATES, so single-particle phaseclassifications from the Two-Dimensional Stereo (2D-S) probe are invaluablefor quantifying mixed-phase cloud properties. Motivated by the presence oflarge biases in existing phase discrimination algorithms, we develop a noveltechnique for single-particle phase classification of binary 2D-S images usinga random forest algorithm, which we refer to as the University of WashingtonIce–Liquid Discriminator (UWILD). UWILD uses 14 parameters computed frombinary image data, as well as particle inter-arrival time, to predict phase.We use liquid-only and ice-dominated time periods within the SOCRATES datasetas training and testing data. This novel approach to model training avoidsmajor pitfalls associated with using manually labeled data, including reducedmodel generalizability and high labor costs. We find that UWILD is wellcalibrated and has an overall accuracy of 95 % compared to72 % and 79 % for two existing phase classificationalgorithms that we compare it with. UWILD improves classifications of smallice crystals and large liquid drops in particular and has more flexibilitythan the other algorithms to identify both liquid-dominated and ice-dominatedregions within the SOCRATES dataset. UWILD misclassifies a small percentageof large liquid drops as ice. Such misclassified particles are typicallyassociated with model confidence below 75 % and can easily befiltered out of the dataset. UWILD phase classifications show that particleswith area-equivalent diameter (Deq)  < 0.17 mm are mostlyliquid at all temperatures sampled, down to −40 ∘C. Largerparticles (Deq>0.17 mm) are predominantly frozen at alltemperatures below 0 ∘C. Between 0 and 5 ∘C,there are roughly equal numbers of frozen and liquid mid-sized particles (0.170.33 mm) are mostly frozen. We also use UWILD's phaseclassifications to estimate sub-1 Hz phase heterogeneity, and we showexamples of meter-scale cloud phase heterogeneity in the SOCRATES dataset. 
    more » « less
  5. null (Ed.)
    Abstract. Long-range transport of biogenic emissions from the coastof Antarctica, precipitation scavenging, and cloud processing are the mainprocesses that influence the observed variability in Southern Ocean (SO)marine boundary layer (MBL) condensation nuclei (CN) and cloud condensationnuclei (CCN) concentrations during the austral summer. Airborne particlemeasurements on the HIAPER GV from north–south transects between Hobart,Tasmania, and 62∘ S during the Southern Ocean Clouds, RadiationAerosol Transport Experimental Study (SOCRATES) were separated into fourregimes comprising combinations of high and low concentrations of CCN andCN. In 5 d HYSPLIT back trajectories, air parcels with elevated CCNconcentrations were almost always shown to have crossed the Antarctic coast,a location with elevated phytoplankton emissions relative to the rest of theSO in the region south of Australia. The presence of high CCN concentrationswas also consistent with high cloud fractions over their trajectory,suggesting there was substantial growth of biogenically formed particlesthrough cloud processing. Cases with low cloud fraction, due to the presenceof cumulus clouds, had high CN concentrations, consistent with previouslyreported new particle formation in cumulus outflow regions. Measurementsassociated with elevated precipitation during the previous 1.5 d of theirtrajectory had low CCN concentrations indicating CCN were effectivelyscavenged by precipitation. A coarse-mode fitting algorithm was used todetermine the primary marine aerosol (PMA) contribution, which accounted for<20 % of CCN (at 0.3 % supersaturation) and cloud dropletnumber concentrations. Vertical profiles of CN and large particleconcentrations (Dp>0.07 µm) indicated that particleformation occurs more frequently above the MBL; however, the growth ofrecently formed particles typically occurs in the MBL, consistent with cloudprocessing and the condensation of volatile compound oxidation products. CCN measurements on the R/V Investigator as part of the second Clouds, Aerosols,Precipitation, Radiation and atmospheric Composition Over the southeRn Ocean(CAPRICORN-2) campaign were also conducted during the same period as theSOCRATES study. The R/V Investigator observed elevated CCN concentrations near Australia,likely due to continental and coastal biogenic emissions. The Antarcticcoastal source of CCN from the south, CCN sources from the midlatitudes, andenhanced precipitation sink in the cyclonic circulation between the Ferreland polar cells (around 60∘ S) create opposing latitudinalgradients in the CCN concentration with an observed minimum in the SObetween 55 and 60∘ S. The SOCRATES airbornemeasurements are not influenced by Australian continental emissions butstill show evidence of elevated CCN concentrations to the south of60∘ S, consistent with biogenic coastal emissions. In addition, alatitudinal gradient in the particle composition, south of the Australianand Tasmanian coasts, is apparent in aerosol hygroscopicity derived from CCNspectra and aerosol particle size distribution. The particles are morehygroscopic to the north, consistent with a greater fraction of sea saltfrom PMA, and less hygroscopic to the south as there is more sulfate andorganic particles originating from biogenic sources in coastal Antarctica. 
    more » « less