skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Testing for association in multiview network data
Abstract In this paper, we consider data consisting of multiple networks, each composed of a different edge set on a common set of nodes. Many models have been proposed for the analysis of suchmultiviewnetwork data under the assumption that the data views are closely related. In this paper, we provide tools for evaluating this assumption. In particular, we ask: given two networks that each follow a stochastic block model, is there an association between the latent community memberships of the nodes in the two networks? To answer this question, we extend the stochastic block model for a single network view to the two‐view setting, and develop a new hypothesis test for the null hypothesis that the latent community memberships in the two data views are independent. We apply our test to protein–protein interaction data from the HINT database. We find evidence of a weak association between the latent community memberships of proteins defined with respect to binary interaction data and the latent community memberships of proteins defined with respect to cocomplex association data. We also extend this proposal to the setting of a network with node covariates. The proposed methods extend readily to three or more network/multivariate data views.  more » « less
Award ID(s):
1748166
PAR ID:
10397316
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
78
Issue:
3
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 1018-1030
Size(s):
p. 1018-1030
Sponsoring Org:
National Science Foundation
More Like this
  1. The stochastic block model (SBM) is one of the most widely used generative models for network data. Many continuous-time dynamic network models are built upon the same assumption as the SBM: edges or events between all pairs of nodes are conditionally independent given the block or community memberships, which prevents them from reproducing higher-order motifs such as triangles that are commonly observed in real networks. We propose the multivariate community Hawkes (MULCH) model, an extremely flexible community-based model for continuous-time networks that introduces dependence between node pairs using structured multivariate Hawkes processes. We fit the model using a spectral clustering and likelihood-based local refinement procedure. We find that our proposed MULCH model is far more accurate than existing models both for predictive and generative tasks. 
    more » « less
  2. Abstract Multi‐view data, which is matched sets of measurements on the same subjects, have become increasingly common with advances in multi‐omics technology. Often, it is of interest to find associations between the views that are related to the intrinsic class memberships. Existing association methods cannot directly incorporate class information, while existing classification methods do not take into account between‐views associations. In this work, we propose a framework for Joint Association and Classification Analysis of multi‐view data (JACA). Our goal is not to merely improve the misclassification rates, but to provide a latent representation of high‐dimensional data that is both relevant for the subtype discrimination and coherent across the views. We motivate the methodology by establishing a connection between canonical correlation analysis and discriminant analysis. We also establish the estimation consistency of JACA in high‐dimensional settings. A distinct advantage of JACA is that it can be applied to the multi‐view data with block‐missing structure, that is to cases where a subset of views or class labels is missing for some subjects. The application of JACA to quantify the associations between RNAseq and miRNA views with respect to consensus molecular subtypes in colorectal cancer data from The Cancer Genome Atlas project leads to improved misclassification rates and stronger found associations compared to existing methods. 
    more » « less
  3. Abstract MotivationHigher-order interaction patterns among proteins have the potential to reveal mechanisms behind molecular processes and diseases. While clustering methods are used to identify functional groups within molecular interaction networks, these methods largely focus on edge density and do not explicitly take into consideration higher-order interactions. Disease genes in these networks have been shown to exhibit rich higher-order structure in their vicinity, and considering these higher-order interaction patterns in network clustering have the potential to reveal new disease-associated modules. ResultsWe propose a higher-order community detection method which identifies community structure in networks with respect to specific higher-order connectivity patterns beyond edges. Higher-order community detection on four different protein–protein interaction networks identifies biologically significant modules and disease modules that conventional edge-based clustering methods fail to discover. Higher-order clusters also identify disease modules from genome-wide association study data, including new modules that were not discovered by top-performing approaches in a Disease Module DREAM Challenge. Our approach provides a more comprehensive view of community structure that enables us to predict new disease–gene associations. Availability and implementationhttps://github.com/Reed-CompBio/graphlet-clustering. 
    more » « less
  4. We study transfer learning for estimation in latent variable network models. In our setting, the conditional edge probability matrices given the latent variables are represented by P for the source and Q for the target. We wish to estimate Q given two kinds of data: (1) edge data from a subgraph induced by an o(1) fraction of the nodes of Q, and (2) edge data from all of P. If the source P has no relation to the target Q, the estimation error must be Ω(1). However, we show that if the latent variables are shared, then vanishing error is possible. We give an efficient algorithm that utilizes the ordering of a suitably defined graph distance. Our algorithm achieves o(1) error and does not assume a parametric form on the source or target networks. Next, for the specific case of Stochastic Block Models we prove a minimax lower bound and show that a simple algorithm achieves this rate. Finally, we empirically demonstrate our algorithm's use on real-world and simulated graph transfer problems. 
    more » « less
  5. Abstract Generating high-quality synthetic networks with realistic community structure is vital to effectively evaluate community detection algorithms. In this study, we propose a new synthetic network generator called the Edge-Connected Stochastic Block Model (EC-SBM). The goal of EC-SBM is to take a given clustered real-world network and produce a synthetic network that resembles the clustered real-world network with respect to both network and community-specific criteria. In particular, we focus on simulating the internal edge connectivity of the clusters in the reference clustered network. Our performance study on large real-world networks shows that EC-SBM is generally more accurate with respect to network and community criteria than currently used approaches for this problem. Furthermore, we demonstrate that EC-SBM can complete analyses on several real-world networks with millions of nodes. 
    more » « less