skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 30, 2026

Title: Principles and Guidelines for Evaluating Social Robot Navigation Algorithms
A major challenge to deploying robots widely is navigation in human-populated environments, commonly referred to associal robot navigation. While the field of social navigation has advanced tremendously in recent years, the fair evaluation of algorithms that tackle social navigation remains hard because it involves not just robotic agents moving in static environments but also dynamic human agents and their perceptions of the appropriateness of robot behavior. In contrast, clear, repeatable, and accessible benchmarks have accelerated progress in fields like computer vision, natural language processing and traditional robot navigation by enabling researchers to fairly compare algorithms, revealing limitations of existing solutions and illuminating promising new directions. We believe the same approach can benefit social navigation. In this article, we pave the road toward common, widely accessible, and repeatable benchmarking criteria to evaluate social robot navigation. Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a design of a social navigation metrics framework to make it easier to compare results from different simulators, robots, and datasets.  more » « less
Award ID(s):
2046955 2350352 2219236
PAR ID:
10583608
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Human-Robot Interaction
Volume:
14
Issue:
2
ISSN:
2573-9522
Page Range / eLocation ID:
1 to 65
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The human-robot interaction community has developed many methods for robots to navigate safely and socially alongside humans. However, experimental procedures to evaluate these works are usually constructed on a per-method basis. Such disparate evaluations make it difficult to compare the performance of such methods across the literature. To bridge this gap, we introduce SocNavBench , a simulation framework for evaluating social navigation algorithms. SocNavBench comprises a simulator with photo-realistic capabilities and curated social navigation scenarios grounded in real-world pedestrian data. We also provide an implementation of a suite of metrics to quantify the performance of navigation algorithms on these scenarios. Altogether, SocNavBench provides a test framework for evaluating disparate social navigation methods in a consistent and interpretable manner. To illustrate its use, we demonstrate testing three existing social navigation methods and a baseline method on SocNavBench , showing how the suite of metrics helps infer their performance trade-offs. Our code is open-source, allowing the addition of new scenarios and metrics by the community to help evolve SocNavBench to reflect advancements in our understanding of social navigation. 
    more » « less
  2. We propose VLM-Social-Nav, a novel Vision-Language Model (VLM) based navigation approach to compute a robot's motion in human-centered environments. Our goal is to make real-time decisions on robot actions that are socially compliant with human expectations. We utilize a perception model to detect important social entities and prompt a VLM to generate guidance for socially compliant robot behavior. VLM-Social-Nav uses a VLM-based scoring module that computes a cost term that ensures socially appropriate and effective robot actions generated by the underlying planner. Our overall approach reduces reliance on large training datasets and enhances adaptability in decision-making. In practice, it results in improved socially compliant navigation in human-shared environments. We demonstrate and evaluate our system in four different real-world social navigation scenarios with a Turtlebot robot. We observe at least 27.38% improvement in the average success rate and 19.05% improvement in the average collision rate in the four social navigation scenarios. Our user study score shows that VLM-Social-Nav generates the most socially compliant navigation behavior. 
    more » « less
  3. We propose a demonstration of the Social Environment for Autonomous Navigation with Virtual Reality (VR) for advancing research in Human-Robot Interaction. In our demonstration, a user controls a virtual avatar in simulation and performs directed navigation tasks with a mobile robot in a warehouse environment. Our demonstration shows how researchers can leverage the immersive nature of VR to study robot navigation from a user-centered perspective in densely populated environments while avoiding physical safety concerns common with operating robots in the real world. This is important for studying interactions with robots driven by algorithms that are early in their development lifecycle. 
    more » « less
  4. A major goal in robotics is to enable intelligent mobile robots to operate smoothly in shared human-robot environments. One of the most fundamental capabilities in service of this goal is competent navigation in this “social” context. As a result, there has been a recent surge of research on social navigation; and especially as it relates to the handling of conflicts between agents during social navigation. These developments introduce a variety of models and algorithms, however as this research area is inherently interdisciplinary, many of the relevant papers are not comparable and there is no shared standard vocabulary. This survey aims at bridging this gap by introducing such a common language, using it to survey existing work, and highlighting open problems. It starts by defining the boundaries of this survey to a limited, yet highly common type of social navigation—conflict avoidance. Within this proposed scope, this survey introduces a detailed taxonomy of the conflict avoidance components. This survey then maps existing work into this taxonomy, while discussing papers using its framing. Finally, this article proposes some future research directions and open problems that are currently on the frontier of social navigation to aid ongoing and future research. 
    more » « less
  5. arXiv (Ed.)
    This study addresses the challenge of integrating social norms into robot navigation, which is essential for ensuring that robots operate safely and efficiently in human-centric environments. Social norms, often unspoken and implicitly understood among people, are difficult to explicitly define and implement in robotic systems. To overcome this, we derive these norms from real human trajectory data, utilizing the comprehensive ATC dataset to identify the minimum social zones humans and robots must respect. These zones are integrated into the robot’s navigation system by applying barrier functions, ensuring the robot consistently remains within the designated safety set. Simulation results demonstrate that our system effectively mimics human-like navigation strategies, such as passing on the right side and adjusting speed or pausing in constrained spaces. The proposed framework is versatile, easily comprehensible, and tunable, demonstrating the potential to advance the development of robots designed to navigate effectively in human-centric environments. 
    more » « less