Abstract The precise regulation of stem cells in the shoot apical meristems (SAMs) involves the function of the homeodomain transcription factor (TF)‐WUSCHEL (WUS). WUS has been shown to move from the site of production‐the rib‐meristem (RM), into overlaying cells of the central zone (CZ), where it specifies stem cells and also regulates the transcription ofCLAVATA3 (CLV3). The secreted signalling peptide CLV3 activates a receptor kinase signalling that restrictsWUStranscription and also regulates the nuclear gradient of WUS by offsetting nuclear export. WUS has been shown to regulate bothCLV3levels and spatial activation, restricting its expression to a few cells in the CZ. The HAIRY MERISTEM (HAM), a GRASS‐domain class of TFs expressed in the RM, has been shown to physically interact with WUS and regulateCLV3expression. However, the mechanisms by which this interaction regulatesCLV3expression non‐cell autonomously remain unclear. Here, we show that HAM function is required for regulating the WUS protein stability, and theCLV3expression responds to altered WUS protein levels inhammutants. Thus, HAM proteins non‐cell autonomously regulatesCLV3expression.
more »
« less
Non-active Site Residue in Loop L4 Alters Substrate Capture and Product Release in d -Arginine Dehydrogenase
- Award ID(s):
- 2018144
- PAR ID:
- 10397402
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Biochemistry
- Volume:
- 62
- Issue:
- 5
- ISSN:
- 0006-2960
- Page Range / eLocation ID:
- p. 1070-1081
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundResearch points to family talk and interactions involving STEM concepts as one of the most influential informal learning experiences that shape an individual's STEM identity development and encourage their pursuit of a STEM career. However, a recent literature review uncovers limited research regarding the development of engineering identity in young children. PurposeThe purpose of this study was to add to this scant literature by exploring how children position themselves as engineers and how children are positioned as engineers through interactions with parents and other adults within a program focused on family engagement within an engineering design process. MethodsThis study includes two parent–child dyads. We collected and analyzed approximately 19.5 h of video data of the two child–parent dyads interacting with one another throughout an engineering design process as part of an out‐of‐school program. ResultsResults highlight three ways in which the two children enacted various engineering identities through their positioning, negotiation, and acceptance and/or rejection of positionalities as they engaged in an engineering design process with a parent. These identity enactments included (a) possessing knowledge and authority to make decisions regarding the development of their self‐identified engineering problem and prototype; (b) questioning and challenging adult ideas, solutions, and construction of prototypes; and (c) documenting and communicating their thinking regarding the engineering design through sketches and notes. ConclusionsThe significance of this study lies in its potential to change the landscape of those who pursue an engineering career and to contribute to the limited research and ongoing conversations about how to foster environments that support families in creative and collaborative learning specific to the engineering discipline.more » « less
-
Abrupt transitions in a southwest USA desert grassland related to the P acific D ecadal O scillationAbstract Prediction of abrupt ecosystem transitions resulting from climatic change will be an essential element of adaptation strategies in the coming decades. In the arid southwest USA, the collapse and recovery of long‐lived perennial grasses have important effects on ecosystem services, but the causes of these variations have been poorly understood. Here we use a quality‐controlled vegetation monitoring dataset initiated in 1915 to show that grass cover dynamics during the 20th century were closely correlated to the Pacific decadal oscillation (PDO) index. The relationship out‐performed models correlating grasses to yearly precipitation and drought indices, suggesting that ecosystem transitions attributed only to local disturbances were instead influenced by climate teleconnections. Shifts in PDO phase over time were associated with the persistent loss of core grass species and recovery of transient species, so recovery of grasses in aggregate concealed significant changes in species composition. However, the relationship between PDO and grass cover broke down after 1995; grass cover is consistently lower than PDO would predict. The decoupling of grass cover from the PDO suggests that a threshold had been crossed in which warming or land degradation overwhelmed the ability of any grass species to recover during favorable periods.more » « less
An official website of the United States government
