Abstract Although plant–soil feedbacks (interactions between plants and soils, often mediated by soil microbes, abbreviated as PSFs) are widely known to influence patterns of plant diversity at local and landscape scales, these interactions are rarely examined in the context of important environmental factors. Resolving the roles of environmental factors is important because the environmental context may alter PSF patterns by modifying the strength or even direction of PSFs for certain species. One important environmental factor that is increasing in scale and frequency with climate change is fire, though the influence of fire on PSFs remains essentially unexamined. By changing microbial community composition, fire may alter the microbes available to colonize the roots of plants and thus seedling growth post‐fire. This has potential to change the strength and/or direction of PSFs, depending on how such changes in microbial community composition occur and the plant species with which the microbes interact. We examined how a recent fire altered PSFs of two leguminous, nitrogen‐fixing tree species in Hawaiʻi. For both species, growing in conspecific soil resulted in higher plant performance (as measured by biomass production) than growing in heterospecific soil. This pattern was mediated by nodule formation, an important process for growth for legume species. Fire weakened PSFs for these species and therefore pairwise PSFs, which were significant in unburned soils, but were nonsignificant in burned soils. Theory suggests that positive PSFs such as those found in unburned sites would reinforce the dominance of species where they are locally dominant. The change in pairwise PSFs with burn status shows PSF‐mediated dominance might diminish after fire. Our results demonstrate that fire can modify PSFs by weakening the legume‐rhizobia symbiosis, which may alter local competitive dynamics between two canopy dominant tree species. These findings illustrate the importance of considering environmental context when evaluating the role of PSFs for plants.
more »
« less
The temporal and spatial dimensions of plant–soil feedbacks
Summary Feedbacks between plants and soil microbes form a keystone to terrestrial community and ecosystem dynamics. Recent advances in dissecting the spatial and temporal dynamics of plant–soil feedbacks (PSFs) have challenged longstanding assumptions of spatially well‐mixed microbial communities and exceedingly fast microbial assembly dynamics relative to plant lifespans. Instead, PSFs emerge from interactions that are inherently mismatched in spatial and temporal scales, and explicitly considering these spatial and temporal dynamics is crucial to understanding the contribution of PSFs to foundational ecological patterns. I propose a synthetic spatiotemporal framework for future research that pairs experimental and modeling approaches grounded in mechanism to improve predictability and generalizability of PSFs.
more »
« less
- PAR ID:
- 10397417
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 237
- Issue:
- 6
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 2012-2019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plant–soil feedbacks (PSFs) drive plant community diversity via interactions between plants and soil microbes. However, we know little about how frequently PSFs affect plants at the seed stage, and the compositional shifts in fungi that accompany PSFs on germination.We conducted a pairwise PSF experiment to test whether seed germination was differentially impacted by conspecific versus heterospecific soils for seven grassland species. We used metagenomics to characterize shifts in fungal community composition in soils conditioned by each plant species. To investigate whether changes in the abundance of certain fungal taxa were associated with multiple PSFs, we assigned taxonomy to soil fungi and identified putative pathogens that were significantly more abundant in soils conditioned by plant species that experienced negative or positive PSFs.We observed negative, positive, and neutral PSFs on seed germination. Although conspecific and heterospecific soils for pairs with significant PSFs contained host‐specialized soil fungal communities, soils with specialized microbial communities did not always lead to PSFs. The identity of host‐specialized pathogens, that is, taxa uniquely present or significantly more abundant in soils conditioned by plant species experiencing negative PSFs, overlapped among plant species, while putative pathogens within a single host plant species differed depending on the identity of the heterospecific plant partner. Finally, the magnitude of feedback on germination was not related to the degree of fungal community differentiation between species pairs involved in negative PSFs.Synthesis. Our findings reveal the potential importance of PSFs at the seed stage. Although plant species developed specialized fungal communities in rhizosphere soil, pathogens were not strictly host‐specific and varied not just between plant species, but according to the identity of plant partner. These results illustrate the complexity of microbe‐mediated interactions between plants at different life stages that next‐generation sequencing can begin to unravel.more » « less
-
Abstract Plants affect associated biotic and abiotic edaphic factors, with reciprocal feedbacks from soil characteristics affecting plants. These two‐way interactions between plants and soils are collectively known as plant–soil feedbacks (PSFs). The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of PSFs, although the strength and direction of feedbacks among sympatric congeners are not well‐understood. We examined plant–soil feedback responses ofAsclepias syriaca, a common clonal milkweed species, with several sympatric congeners across a gradient of increasing phylogenetic distances (A. tuberosa,A. viridis,A. sullivantii, andA. verticillata, respectively). Plant–soil feedbacks were measured through productivity and colonization by arbuscular mycorrhizal (AM) fungi.Asclepias syriacaproduced less biomass in soils conditioned by the most phylogenetically distant species (A. verticillata), relative to conspecific‐conditioned soils. Similarly, arbuscular mycorrhizal (AM) fungal colonization ofA. syriacaroots was reduced when grown in soils conditioned byA. verticillata, compared with colonization in plants grown in soil conditioned by any of the other threeAsclepiasspecies, indicating mycorrhizal associations are a potential mechanism of observed positive PSFs. This display of differences between the most phylogenetically distant, but not close or intermediate, paring(s) suggests a potential phylogenetic threshold, although other exogenous factors cannot be ruled out. Overall, these results highlight the potential role of phylogenetic distance in influencing positive PSFs through mutualists. The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of plant–soil feedbacks (PSFs), although the strength and direction of feedbacks among sympatric congeners are not well‐understood. Congeneric, sympatric milkweeds typically generated positive PSFs in terms of productivity and AM fungal colonization, suggesting the low likelihood of coexistence among tested pairs, with a strength of feedback increasing as the phylogenetic distance increases.more » « less
-
Plant-soil feedbacks (PSFs) are interactions among plants, soil organisms, and abiotic soil conditions that influence plant performance, plant species diversity, and community structure, ultimately driving ecosystem processes. We review how climate change will alter PSFs and their potential consequences for ecosystem functioning. Climate change influences PSFs through the performance of interacting species and altered community composition resulting from changes in species distributions. Climate change thus affects plant inputs into the soil subsystem via litter and rhizodeposits and alters the composition of the living plant roots with which mutualistic symbionts, decomposers, and their natural enemies interact. Many of these plant-soil interactions are species-specific and are greatly affected by temperature, moisture, and other climate-related factors. We make a number of predictions concerning climate change effects on PSFs and consequences for vegetation-soil-climate feedbacks while acknowledging that they may be context-dependent, spatially heterogeneous, and temporally variable.more » « less
-
Abstract Although diversity‐dependent plant–soil feedbacks (PSFs) may contribute significantly to plant diversity effects on ecosystem functioning, the influences of underlying abiotic and biotic mechanistic pathways have been little explored to date. Here, we assessed such pathways with a PSF experiment using soil conditioned for ≥12 yr from two grassland biodiversity experiments. Model plant communities differing in plant species and functional group richness (current plant diversity treatment) were grown in soils conditioned by plant communities with either low‐ or high‐diversity (soil history treatment). Our results indicate that plant diversity can modify plant productivity through both diversity‐mediated plant–plant and plant–soil interactions, with the main driver (current plant diversity or soil history) differing with experimental context. Structural equation modeling suggests that the underlying mechanisms of PSFs were explained to a significant extent by both abiotic and biotic pathways (specifically, soil nitrogen availability and soil nematode richness). Thus, effects of plant diversity loss on plant productivity may persist or even increase over time because of biotic and abiotic soil legacy effects.more » « less
An official website of the United States government
