skip to main content


Title: Role of plant relatedness in plant–soil feedback dynamics of sympatric Asclepias species
Abstract

Plants affect associated biotic and abiotic edaphic factors, with reciprocal feedbacks from soil characteristics affecting plants. These two‐way interactions between plants and soils are collectively known as plant–soil feedbacks (PSFs). The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of PSFs, although the strength and direction of feedbacks among sympatric congeners are not well‐understood. We examined plant–soil feedback responses ofAsclepias syriaca, a common clonal milkweed species, with several sympatric congeners across a gradient of increasing phylogenetic distances (A. tuberosa,A. viridis,A. sullivantii, andA. verticillata, respectively). Plant–soil feedbacks were measured through productivity and colonization by arbuscular mycorrhizal (AM) fungi.Asclepias syriacaproduced less biomass in soils conditioned by the most phylogenetically distant species (A. verticillata), relative to conspecific‐conditioned soils. Similarly, arbuscular mycorrhizal (AM) fungal colonization ofA. syriacaroots was reduced when grown in soils conditioned byA. verticillata, compared with colonization in plants grown in soil conditioned by any of the other threeAsclepiasspecies, indicating mycorrhizal associations are a potential mechanism of observed positive PSFs. This display of differences between the most phylogenetically distant, but not close or intermediate, paring(s) suggests a potential phylogenetic threshold, although other exogenous factors cannot be ruled out. Overall, these results highlight the potential role of phylogenetic distance in influencing positive PSFs through mutualists. The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of plant–soil feedbacks (PSFs), although the strength and direction of feedbacks among sympatric congeners are not well‐understood. Congeneric, sympatric milkweeds typically generated positive PSFs in terms of productivity and AM fungal colonization, suggesting the low likelihood of coexistence among tested pairs, with a strength of feedback increasing as the phylogenetic distance increases.

 
more » « less
Award ID(s):
1946093
NSF-PAR ID:
10495358
Author(s) / Creator(s):
; ;
Publisher / Repository:
RESEARCH ARTICLE
Date Published:
Journal Name:
Ecology and Evolution
Volume:
13
Issue:
1
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While work in temperate forests suggests that there are consistent differences in plant–soil feedback (PSF) between plants with arbuscular and ectomycorrhizal associations, it is unclear whether these differences exist in tropical rainforests. We tested the effects of mycorrhizal type, phylogenetic relationships to overstory species, and soil fertility on the growth of tree seedlings in a tropical Bornean rainforest with a high diversity of both ectomycorrhizal and arbuscular mycorrhizal trees. We found that ectomycorrhizal tree seedlings had higher growth in soils conditioned by close relatives and that this was associated with higher mycorrhizal colonization. By contrast, arbuscular mycorrhizal tree seedlings generally grew more poorly in soils conditioned by close relatives. For ectomycorrhizal species, the phylogenetic trend was insensitive to soil fertility. For arbuscular mycorrhizal seedlings, however, the effect of growing in soils conditioned by close relatives became increasingly negative as soil fertility increased. Our results demonstrate consistent effects of mycorrhizal type on plant–soil feedbacks across forest biomes. The positive effects of ectomycorrhizal symbiosis may help explain biogeographic variation across tropical forests, such as familial dominance of the Dipterocarpaceae in southeast Asia. However, positive feedbacks also raise questions about the role of PSFs in maintaining tropical diversity.

     
    more » « less
  2. Abstract

    Plant–soil feedbacks (PSFs) drive plant community diversity via interactions between plants and soil microbes. However, we know little about how frequently PSFs affect plants at the seed stage, and the compositional shifts in fungi that accompany PSFs on germination.

    We conducted a pairwise PSF experiment to test whether seed germination was differentially impacted by conspecific versus heterospecific soils for seven grassland species. We used metagenomics to characterize shifts in fungal community composition in soils conditioned by each plant species. To investigate whether changes in the abundance of certain fungal taxa were associated with multiple PSFs, we assigned taxonomy to soil fungi and identified putative pathogens that were significantly more abundant in soils conditioned by plant species that experienced negative or positive PSFs.

    We observed negative, positive, and neutral PSFs on seed germination. Although conspecific and heterospecific soils for pairs with significant PSFs contained host‐specialized soil fungal communities, soils with specialized microbial communities did not always lead to PSFs. The identity of host‐specialized pathogens, that is, taxa uniquely present or significantly more abundant in soils conditioned by plant species experiencing negative PSFs, overlapped among plant species, while putative pathogens within a single host plant species differed depending on the identity of the heterospecific plant partner. Finally, the magnitude of feedback on germination was not related to the degree of fungal community differentiation between species pairs involved in negative PSFs.

    Synthesis. Our findings reveal the potential importance of PSFs at the seed stage. Although plant species developed specialized fungal communities in rhizosphere soil, pathogens were not strictly host‐specific and varied not just between plant species, but according to the identity of plant partner. These results illustrate the complexity of microbe‐mediated interactions between plants at different life stages that next‐generation sequencing can begin to unravel.

     
    more » « less
  3. null (Ed.)
    Abstract In a globalized world, plant invasions are common challenges for native ecosystems. Although a considerable number of invasive plants form arbuscular mycorrhizae, interactions between arbuscular mycorrhizal (AM) fungi and invasive and native plants are not well understood. In this study, we conducted a greenhouse experiment examining how AM fungi affect interactions of co-occurring plant species in the family Asteracea, invasive Echinops sphaerocephalus and native forb of central Europe Inula conyzae . The effects of initial soil disturbance, including the effect of intact or disturbed arbuscular mycorrhizal networks (CMNs), were examined. AM fungi supported the success of invasive E. sphaerocephalus in competition with native I. conyzae , regardless of the initial disturbance of CMNs. The presence of invasive E. sphaerocephalus decreased mycorrhizal colonization in I. conyzae , with a concomitant loss in mycorrhizal benefits. Our results confirm AM fungi represent one important mechanism of plant invasion for E. sphaerocephalus in semi-natural European grasslands. 
    more » « less
  4. Abstract

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (Kstatistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (= 0.44–0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (rPIC = −0.77) and thicker root diameter (rPIC = −0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade‐offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (rPIC = 0.85, −0.87), suggesting constraints on colonization linked to the evolution of root morphology.

     
    more » « less
  5. Abstract

    Non-native, invasive plants are increasingly common in Eastern North American forests, but their impact on soil fungi remains unclear. We used DNA metabarcoding to investigate the effects of nativity, plant mycorrhizal type and soil factors on root-associated fungal communities. We focused on understory woody plants in a deciduous forest tract in central New York state, and included three plant types, invasive arbuscular mycorrhizal (AM), native AM, and native ectomycorrhizal (EM), each represented by 3–5 species. We found lower fungal operational taxonomic unit (OTU) diversity in EM than AM plants, but no OTU diversity difference between native and invasive AM species. Pathogen OTU richness and relative abundance were not distinct between plant types. OTU composition was influenced by host mycorrhizal type and by AM plant nativity, with mycorrhizal fungi being important drivers in both cases. The relationships of soil characteristics (e.g., pH) with OTU composition were independent of plant nativity and mycorrhizal type. Specific root length of native AM species was lower than that of invasive AM plants, while EM plants were intermediate. Irrespective of plant type, OTU composition was distinct among plant species, particularly in fungal communities associated with the invaderRhamnus cathartica. These results suggest that invasive AM plants may shift fungal composition relative to native AM and EM plants, with potential long-term consequences for soil biodiversity.

     
    more » « less