skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing Coverage with Intelligent Surfaces for Indoor mmWave Networks
Reconfigurable intelligent surfaces (RISs) have been proposed to increase coverage in millimeter-wave networks by providing an indirect path from transmitter to receiver when the line-of-sight (LoS) path is blocked. In this paper, the problem of optimizing the locations and orientations of multiple RISs is considered for the first time. An iterative coverage expansion algorithm based on gradient descent is proposed for indoor scenarios where obstacles are present. The goal of this algorithm is to maximize coverage within the shadowed regions where there is no LoS path to the access point. The algorithm is guaranteed to converge to a local coverage maximum and is combined with an intelligent initialization procedure to improve the performance and efficiency of the approach. Numerical results demonstrate that, in dense obstacle environments, the proposed algorithm doubles coverage compared to a solution without RISs and provides about a 10% coverage increase compared to a brute force sequential RIS placement approach.  more » « less
Award ID(s):
1813242
PAR ID:
10397447
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the IEEE Conference on Computer Communications
Page Range / eLocation ID:
830 to 839
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Employing Reconfigurable Intelligent Surface (RIS) is an advanced strategy to enhance the efficiency of wireless communication systems. However, the number and positions of the RISs elements are still challenging and require a smart optimization framework. This paper aims to optimize the number of RISs subject to the technical limitations of the average achievable data rate with consideration of the practical overlapping between the associated multi-RISs in wireless communication systems. In this regard, the Differential evolution optimizer (DEO) algorithm is created to minimize the number of RIS devices to be installed. Accordingly, the number, positions, and phase shift matrix coefficients of RISs are then jointly optimized using the intended DEO. Also, it is contrasted to several recent algorithms, including Particle swarm optimization (PSO), Gradient-based optimizer (GBO), Growth optimizer (GO), and Seahorse optimization (SHO). The outcomes from the simulation demonstrate the high efficiency of the proposed DEO and GO in obtaining a 100% feasibility rate for finding the minimum number of RISs under different threshold values of the achievable rates. PSO scores a comparable result of 99.09%, while SHO and GBO attain poor rates of 66.36% and 53.94%, respectively. Nevertheless, the excellence of the created DEO becomes evident through having the lowest average number of RISs when compared to the other algorithms. Numerically, the DEO drives improvements by 5.13%, 15.68%, 30.58%, and 51.01% compared to GO, PSO, SHO and GBO, respectively. 
    more » « less
  2. An innovative method to raise wireless communication systems’ efficiency is to use Reconfigurable Intelligent Surface (RIS). Unfortunately, determining the quantity and locations of the RIS elements continues to be difficult, requiring a clever optimization framework. Concerning the practical overlap between the related multi-RISs in wireless communication systems, this article attempts to minimize the number of RISs while considering the average possible data rate and technological constraints. In this regard, a novel enhanced artificial rabbits algorithm (EARA) is developed to minimize the number of RISs to be installed. The novel EARA is inspired by the natural survival strategies of rabbits, including detour eating and random concealment. A more effective method of exploring the search space around the best solution so far is produced by the suggested EARA by combining an upgraded collaborative searching operator (CSO) arrangement. Also, an adaptive time function is included to increase the effect of this exploitation tactic by the increasing number of iterations. The simulation results show that the suggested EARA is highly efficient in reaching the maximum success rate of producing the smallest number of RISs under various feasible rate threshold settings. When EARA is compared to standard artificial rabbits optimizer (ARO), growth optimizer (GO), artificial ecosystem optimizer (AEO), and particle swarm optimization (PSO), the average number of RISs is improved by 5.32%, 6.7%, 16.73%, and 20.06%, respectively. Furthermore, according to simulation data, the EARA outperforms AEO, GO, ARO, and PSO in terms of success rate at δ=1.4 by 6.66%, 6.66%, 45.43%, and 99%, 
    more » « less
  3. Future wireless networks could benefit from the energy-efficient, low-latency, and scalable deployments that Reconfigurable Intelligent Surfaces (RISs) offer. However, the creation of an effective low overhead channel estimate technique is a major obstacle in RIS-assisted systems, especially given the high number of RIS components and intrinsic hardware constraints. This research examines the uplink of a RIS-empowered multi-user MIMO communication system and presents a novel semi-blind channel estimate approach. Unlike current approaches, which rely on pilot-based channel estimation, our methodology uses data to estimate channels, considerably enhancing the achievable rate. We provide a closed-form deterministic expression for the uplink achievable rate in actual settings where the channel state information (CSI) must be estimated rather than assumed perfect. The results of the simulations show that the formula obtained is accurate, with a close alignment between the deterministic and actual achievable rates (generally between 2 5% deviations). The proposed approach outperforms traditional approaches, resulting in rate increases of up to 35–40%, especially in instances with more RIS elements. These findings illustrate RIS technology's tremendous potential to improve system capacity and coverage, providing useful insights for optimizing RIS adoption in future wireless networks. 
    more » « less
  4. Joint device-to-device (D2D) and cellular communication is a promising technology for enhancing the spectral efficiency of future wireless networks. However, the interference management problem is challenging since the operating devices and the cellular users share the same spectrum. The emerging reconfigurable intelligent surfaces (RIS) technology is a potentially ideal solution for this interference problem since RISs can shape the wireless channel in desired ways. This paper considers an RIS-aided joint D2D and cellular communication system where the RIS is exploited to cancel interference to the D2D links and maximize the minimum signal-to-interference plus noise (SINR) of the device pairs and cellular users. First, we adopt a popular alternating optimization (AO) approach to solve the minimum SINR maximization problem. Then, we propose an interference cancellation (IC)-based approach whose complexity is much lower than that of the AO algorithm. We derive a representation for the RIS phase shift vector which cancels the interference to the D2D links. Based on this representation, the RIS phase shift optimization problem is transformed into an effective D2D channel optimization. We show that the AO approach can converge faster and can even give better performance when it is initialized by the proposed IC solution. We also show that for the case of a single D2D pair, the proposed IC approach can be implemented with limited feedback from the single receive device. 
    more » « less
  5. Millimeter wave (MmWave) systems are vulnerable to blockages, which cause signal drop and link outage. One solution is to deploy reconfigurable intelligent surfaces (RISs) to add a strong non-line-of-sight path from the transmitter to receiver. To achieve the best performance, the location of the deployed RIS should be optimized for a given site, considering the distribution of potential users and possible blockers. In this paper, we find the optimal location, height and downtilt of RIS working in a realistic vehicular scenario. Because of the proximity between the RIS and the vehicles, and the large electrical size of the RIS, we consider a 3D geometry including the elevation angle and near-field beamforming. We provide results on RIS configuration in terms of both coverage ratio and area-averaged rate. We find that the optimized RIS improves the area-averaged rate fifty percent over the case without a RIS, as well as further improvements in the coverage ratio. 
    more » « less