skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The influence of uncertain mantle density and viscosity structures on the calculations of deep mantle flow and lateral motion of plumes
SUMMARY Mantle plumes form from thermal boundary layers, such as Earth's core–mantle boundary. As plumes rise towards the surface, they are laterally deflected by the surrounding mantle flow that is governed by deep mantle density and viscosity structures. The lateral motions of mantle plumes carry information of deep mantle structure and dynamics and are used to setup reference frames by which absolute plate motions are reconstructed. In this study, we compare two methods to compute deep mantle flow and lateral motion of plumes. In mantle convection (MC) models, the mantle flow field and lateral motions of plumes are determined by solving conservation equations forward-in-time from given initial conditions. In plume advection (PA) models, approximate viscosity and present-day density structures are used to calculate present-day mantle flow which is then propagated backward-in-time assuming zero thermal diffusion, and plume conduits are represented by continuous lines and are passively advected within the background mantle flow. The question is how assumptions in PA models influence the predictions of deep mantle flow and plume lateral motions. Here, we perform purely thermal MC models and thermochemical MC models with intrinsically dense materials in the lowermost mantle. The deep mantle flow and plume lateral motions are determined accurately in each MC model. We also perform PA models using the approximated present-day viscosity and temperature structures in these MC models. We find that PA models without considering temperature-dependence of viscosity and/or only using long wavelength present-day temperature structure (up to degree 20) often lead to an average of ∼50–60 per cent and ∼60–200 per cent differences of present-day mantle flow velocities than purely thermal MC models and thermochemical MC models, respectively. By propagating inaccurate flow fields backward-in-time in PA models often cause even larger errors of mantle flow velocities in the past. Even using the same parameters and starting from the same present-day mantle flow fields as in MC models, the PA models still show an average of ∼10–30 per cent misfit of mantle flow velocities after ∼40 Ma. In addition, we show that errors of mantle flow fields in PA models can cause ∼100–600 per cent differences of plume lateral motions than that constrained in MC models in the past 60 Ma. Even we use the mantle flow in MC models to advected virtual plumes in PA models, the virtual plumes could still show ∼50–300 per cent difference of lateral motions than dynamic plumes in MC models if the virtual plumes do not start with the same locations and/or shapes as plumes in MC models. We also find virtual plumes in PA models initiated at different locations and/or with different shapes can be later advected to similar locations, suggesting that the lateral motions of plumes in PA models can be non-unique. Therefore, it is important to consider the build-in assumptions of PA models when interpreting their predictions on deep mantle flow field and plume lateral motions. The accuracy of PA models would improve as we gain better understanding on Earth's deep mantle structure and dynamics.  more » « less
Award ID(s):
2054926
PAR ID:
10397472
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
233
Issue:
3
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 1916-1937
Size(s):
p. 1916-1937
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The shapes of mantle plumes are sensitive to mantle viscosity, density structure, and flow patterns. Increasingly, global tomographic models reveal broad plume conduits in the lower mantle and highly tilting conduits in the mid and upper mantle. Previous studies mostly relied on 2D slices to analyze plume shapes, but fully investigating the complexity of 3D plume structures requires more effective visualization methods. Here, we use immersive headset‐based virtual reality (VR) to visualize the full‐waveform global tomographic models SEMUCB‐WM1 and GLAD‐M25. We develop criteria for the identification of plume conduits based on the relationship between the plume excess temperature and theVSanomaly (δVS). We trace 20 major plume conduits, measure the offsets of the conduits in azimuth and distance with respect to the hotspots, calculate the tilt angle, and evaluate theδVSalong all traced conduits. We compare our traced conduits with the conduits predicted by global mantle convection models and vertical conduits. The wavespeed variations along conduits traced from each tomographic model are slower than modeled or vertical conduits, regardless of which tomographic model they are evaluated in. The shapes of traced conduits tend to differ greatly from modeled conduits. Plume ponding and the emergence of secondary plumes, which could result from a combination of compositional variations, phase transitions, small‐scale convection, and variations in viscosity, can contribute to the complex observed plume shapes. The variation ofδVSalong the traced conduits and complex plume shapes suggest a thermochemical origin of many plumes. 
    more » « less
  2. null (Ed.)
    Seismic observations indicate that the lowermost mantle above the core-mantle boundary is strongly heterogeneous. Body waves reveal a variety of ultra-low velocity zones (ULVZs), which extend not more than 100 km above the core-mantle boundary and have shear velocity reductions of up to 30 per cent. While the nature and origin of these ULVZs remain uncertain, some have suggested they are evidence of partial melting at the base of mantle plumes. Here we use coupled geodynamic/thermodynamic modelling to explore the hypothesis that present-day deep mantle melting creates ULVZs and introduces compositional heterogeneity in the mantle. Our models explore the generation and migration of melt in a deforming and compacting host rock at the base of a plume in the lowermost mantle. We test whether the balance of gravitational and viscous forces can generate partially molten zones that are consistent with the seismic observations. We find that for a wide range of plausible melt densities, permeabilities and viscosities, lower mantle melt is too dense to be stirred into convective flow and instead sinks down to form a completely molten layer, which is inconsistent with observations of ULVZs. Only if melt is less dense or at most ca. 1 per cent more dense than the solid, or if melt pockets are trapped within the solid, can melt remain suspended in the partial melt zone. In these cases, seismic velocities would be reduced in a cone at the base of the plume. Generally, we find partial melt alone does not explain the observed ULVZ morphologies and solid-state compositional variation is required to explain the anomalies. Our findings provide a framework for testing whether seismically observed ULVZ shapes are consistent with a partial melt origin, which is an important step towards constraining the nature of the heterogeneities in the lowermost mantle and their influence on the thermal, compositional, and dynamical evolution of the Earth. 
    more » « less
  3. Abstract The effect of mantle plumes is secondary to that of subducting slabs for modern plate tectonics when considering plate driving forces. However, the impact of plumes on tectonics and planetary surface evolution may nonetheless have been significant. We use numerical mantle convection models in a 3‐D spherical chunk geometry with damage rheology to study some of the dynamics of plume‐slab interactions. Substantiating our earlier 2‐D results, we observe a range of interaction scenarios, and that the plume‐driven subduction terminations we had identified earlier persist in more realistic convective flow. We analyze the dynamics of plume affected subduction, including in terms of their geometry, frequency, and the overall effect of plumes on surface dynamics as a function of the fraction of internal to bottom heating. Some versions of such plume‐slab interplay may be relevant for geologic events, for example, for the inferred ∼183 Ma Karoo large igneous province formation and associated slab disruption. More recent examples may include the impingement of the Afar plume underneath Africa leading to disruption of the Hellenic slab, and the current complex structure imaged for the subduction of the Nazca plate under South America. Our results imply that plumes may play a significant role not just in kick‐starting plate tectonics, but also in major modifications of slab‐driven plate motions, including for the present‐day mantle. 
    more » « less
  4. Abstract Large igneous provinces (LIPs) have been linked to both surface and deep mantle processes. During the formation, tenure and break-up of the supercontinent Pangaea, there is an increase in emplacement events for both continental and oceanic LIPs. There is currently no clear consensus on the origin of LIPs, but a hypothesis relates their formation to crustal emplacement of hot plume material originating in the deep mantle. The interaction of subducted slabs with the lowermost mantle thermal boundary and subsequent return flow is a key control on such plume generation. This mechanism has been explored for LIPs below the interior of a supercontinent (i.e. continental LIPs). However, a number of LIPs formed exterior to Pangaea (e.g. Ontong Java Plateau), with no consensus on their formation mechanism. Here, we consider the dynamics of supercontinent processes as predicted by numerical models of mantle convection and analyse whether circum-supercontinent subduction could generate both interior (continental) and exterior (oceanic) deep mantle plumes. Our numerical models show that subduction related to the supercontinent cycle can reproduce the location and timing of the Ontong Java Plateau, Caribbean LIP and potentially the Shatsky Rise by linking the origin of these LIPs to the return flow that generated deep mantle exterior plumes. 
    more » « less
  5. Abstract It has been proposed that hot spot tracks are caused by moving rigid plates above relatively stationary hot spots. However, the fixity of hot spots remains under debate. Here, we perform 3‐D very high resolution (<25 km laterally) global mantle convection models with realistic convection vigor to investigate the lateral motion of mantle plumes. We find that the lateral motion of plumes beneath the Pacific plate is statistically similar to that beneath the Indo‐Atlantic plates. In the past 80 Ma, the majority (>90%) of plumes move laterally with an average speed of 0–20 mm/year under the no‐net‐rotation reference frame, and there are a small portion (~10–20%) of plumes whose lateral motion is less than 5 mm/year. The geodynamic modeling results are statistically in a good agreement with the hot spot motions in the last 5 Ma estimated from observation‐based kinematic models. Our results suggest a small‐to‐moderate (0–20 mm/year) lateral motion of most plume‐induced hot spots. 
    more » « less