To cope with growing wireless bandwidth demand, millimeter wave (mmWave) communication has been identified as a promising technology to deliver Gbps throughput. However, due to the susceptibility of mmWave signals to blockage, applications can experience significant performance variability as users move around due to rapid and significant variation in channel conditions. In this context, proactive schedulers that make use of future data rate prediction have potential to bring a significant performance improvement as compared to traditional schedulers. In this work, we explore the possibility of proactive scheduling that uses mobility prediction and some knowledge of the environment to predict future channel conditions. We present both an optimal proactive scheduler, which is based on an integer linear programming formulation and provides an upper bound on proactive scheduling performance, and a greedy heuristic proactive scheduler that is suitable for practical implementation. Extensive simulation results show that proactive scheduling has the potential to increase average user data rate by up to 35% over the classic proportional fair scheduler without any loss of fairness and incurring only a small increase in jitter. The results also show that the efficient proactive heuristic scheduler achieves from 60% to 75% of the performance gains of the optimal proactive scheduler. Finally, the results show that proactive scheduling performance is sensitive to the quality of mobility prediction and, thus, use of state-of-the-art mobility prediction techniques will be necessary to realize its full potential.
more »
« less
Exploring Performance Limits on Proactive Fair Scheduling for mmWave WLANs
Although the millimeter wave (mmWave) band has great potential to address ever-increasing demands for wireless bandwidth, its intrinsically unique propagation characteristics call for different scheduling strategies in order to minimize performance drops caused by blockages. A promising approach to mitigate the blockage problem is proactive scheduling, which uses blockage predictions to schedule users when they are experiencing good channel conditions. In this paper, we formulate an optimal scheduling problem with fairness constraints that allows us to find a schedule with maximum aggregate rate that achieves approximately the same fairness as the classic proportional fair scheduler. The results show that, for the problem settings studied, up to around 30% increase in aggregate rate compared to classic proportional fair scheduling (PFS) is possible with no decrease in fairness when blockages can be accurately predicted 0.5 seconds in advance. Furthermore, aggregate rate could be doubled compared to PFS if blockages can be accurately predicted 5 seconds in advance. While these results demonstrate the very promising potential of proactive scheduling, we also discuss several future research directions that must be pursued to effectively realize the approach.
more »
« less
- Award ID(s):
- 1813242
- PAR ID:
- 10397501
- Date Published:
- Journal Name:
- Proceedings of the IEEE International Symposium on Local and Metropolitan Area Networks
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To cope with growing wireless bandwidth demand, millimeter wave (mmWave) communication has been identified as a promising technology to deliver Gbps throughput. However, due to the susceptibility of mmWave signals to blockage, applications can experience significant performance variability as users move around due to rapid and significant variation in channel conditions. In this context, proactive schedulers that make use of future data rate prediction have potential to bring a significant performance improvement as compared to traditional schedulers. In this work, we propose an efficient proactive algorithm that prioritizes the scheduling of scarce resources to achieve better performance than traditional schedulers. The results show that our scheduler can increase average data rate by up to 20% compared to non-proactive scheduling and achieves from 60% to 75% of the performance gain of an optimal proactive scheduler.more » « less
-
We first consider the static problem of allocating resources to (i.e., scheduling) multiple distributed application frameworks, possibly with different priorities and server preferences, in a private cloud with heterogeneous servers. Several fair scheduling mechanisms have been proposed for this purpose. We extend prior results on max-min fair (MMF) and proportional fair (PF) scheduling to this constrained multiresource and multiserver case for generic fair scheduling criteria. The task efficiencies (a metric related to proportional fairness) of max- min fair allocations found by progressive filling are compared by illustrative examples. In the second part of this paper, we consider the online problem (with framework churn) by implementing variants of these schedulers in Apache Mesos using progressive filling to dynamically approximate max-min fair allocations. We evaluate the implemented schedulers in terms of overall execution time of realistic distributed Spark workloads. Our experiments show that resource efficiency is improved and execution times are reduced when the scheduler is “server specific” or when it leverages characterized required resources of the workloads (when known).more » « less
-
Millimeter-wave (mmWave) communications have been regarded as one of the most promising solutions to deliver ultra-high data rates in wireless local-area networks. A significant barrier to delivering consistently high rate performance is the rapid variation in quality of mmWave links due to blockages and small changes in user locations. If link quality can be predicted in advance, proactive resource allocation techniques such as link-quality-aware scheduling can be used to mitigate this problem. In this paper, we propose a link quality prediction scheme based on knowledge of the environment. We use geometric analysis to identify the shadowed regions that separate LoS and NLoS scenarios, and build LoS and NLoS link-quality predictors based on an analytical model and a regression-based approach, respectively. For the more challenging NLoS case, we use a synthetic dataset generator with accurate ray tracing analysis to train a deep neural network (DNN) to learn the mapping between environment features and link quality. We then use the DNN to efficiently construct a map of link quality predictions within given environments. Extensive evaluations with additional synthetically generated scenarios show a very high prediction accuracy for our solution. We also experimentally verify the scheme by applying it to predict link quality in an actual 802.11ad environment, and the results show a close agreement between predicted values and measurements of link quality.more » « less
-
Millimeter-wave wireless LANs are targeted for use with bandwidth-intensive applications such as virtual/augmented reality and real-time high-definition video. To maintain high throughput while addressing mmWave signal blockages, multiple access points (APs) within one room to improve line-of-sight conditions is considered a promising approach. In a scenario with fixed and mobile (human) obstacles, we mathematically analyze LoS blockages produced by mobility, and use the analysis to develop a multi-AP association scheme. Our scheme statically assigns primary and backup APs in order to maximize blockage robustness and perform load balancing among APs. Simulation results show that: 1) our static approach can provide blockage tolerance close to that of an expensive dynamic probing approach while achieving higher throughput, 2) the use of client mobility patterns, if known, can improve our static approach even further, and 3) our approach achieves significantly better fairness and load balancing than existing approaches.more » « less