skip to main content


Title: Performance Evaluation of Sandwich Structures Printed by Vat Photopolymerization
Additive manufacturing such as vat photopolymerization allows to fabricate intricate geometric structures than conventional manufacturing techniques. However, the manufacturing of lightweight sandwich structures with integrated core and facesheet is rarely fabricated using this process. In this study, photoactivatable liquid resin was used to fabricate sandwich structures with various intricate core topologies including the honeycomb, re-entrant honeycomb, diamond, and square by a vat photopolymerization technique. Uniaxial compression tests were performed to investigate the compressive modulus and strength of these lightweight structures. Sandwich cores with the diamond structure exhibited superior compressive and weight-saving properties whereas the re-entrant structures showed high energy absorption capacity. The fractured regions of the cellular cores were visualized by scanning electron microscopy. Elastoplastic finite element analyses showed the stress distribution of the sandwich structures under compressive loading, which are found to be in good agreement with the experimental results. Dynamic mechanical analysis was performed to compare the behavior of these structures under varying temperatures. All the sandwich structures exhibited more stable thermomechanical properties than the solid materials at elevated temperatures. The findings of this study offer insights into the superior structural and thermal properties of sandwich structures printed by a vat photopolymerization technique, which can benefit a wide range of engineering applications.  more » « less
Award ID(s):
2138459
NSF-PAR ID:
10397551
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Polymers
Volume:
14
Issue:
8
ISSN:
2073-4360
Page Range / eLocation ID:
1513
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background:: Sandwich structures are progressively being used in various engineering applications due to the superior bending-stiffness-to-weight ratio of these structures. We adapted a novel technique to incorporate carbon nanotubes (CNTs) and polyhedral oligomeric silsesquioxanes (POSS) into a sandwich composite structure utilizing a sonochemical and high temperature vacuum assisted resin transfer molding technique. Objective:: The objective of this work was to create a sandwich composite structure comprised of a nanophased foam core and reinforced nanophased face sheets, and to examine the thermal and mechanical properties of the structure. To prepare sandwich structure, POSS nanoparticles were sonochemically attached to CNTs and dispersed in a high temperature resin system to make the face sheet materials and also coated on expandable thermoplastic microspheres for the fabrication of foam core materials. Method:: The nanophased foam core was fabricated with POSS infused thermoplastic microspheres (Expancel) using a Tetrahedron MTP-14 programmable compression molder. The reinforced nanophased face sheet were fabricated by infusing POSS coated CNT in epoxy resin and then curing into a compression stainless steel mold. Result:: Thermal analysis of POSS-infused thermoplastic microspheres foam (TMF) showed an increase in thermal stability in both nitrogen and oxygen atmospheres, 19% increase in thermal residue were observed for 4 wt% GI-POSS TMF compared to neat TMF. Quasi-static compression results indicated significant increases (73%) in compressive modulus, and an increase (5%) in compressive strength for the 1 wt% EC-POSS/CNTs resin system. The nanophased sandwich structure constructed from the above resin system and the foam core system displayed an increase (9%) in modulus over the neat sandwich structure. Conclusion:: The incorporation of POSS-nanofillier in the foam core and POSS-coated nanotubes in the face sheet significantly improved the thermal and mechanical properties of sandwich structure. Furthermore, the sandwich structure that was constructed from nanophased resin system showed an increase in modulus, with buckling in the foam core but no visible cracking. 
    more » « less
  2. Microneedles (MNs) are micrometer-sized arrays that can penetrate the skin in a minimally invasive manner; these devices offer tremendous potential for the transdermal delivery of therapeutic molecules. Although there are many conventional techniques for manufacturing MNs, most of them are complicated and can only fabricate MNs with specific geometries, which restricts the ability to adjust the performance of the MNs. Herein, we present the fabrication of gelatin methacryloyl (GelMA) MN arrays using the vat photopolymerization 3D printing technique. This technique allows for the fabrication of high-resolution and smooth surface MNs with desired geometries. The existence of methacryloyl groups bonded to the GelMA was verified by 1 H NMR and FTIR analysis. To examine the effects of varying needle heights (1000, 750, and 500 µm) and exposure times (30, 50, and 70 s) on GelMA MNs, the height, tip radius, and angle of the needles were measured; their morphological and mechanical properties were also characterized. It was observed that as the exposure time increased, the height of the MNs increased; moreover, sharper tips were obtained and tip angles decreased. In addition, GelMA MNs exhibited good mechanical performance with no breakage up to 0.3 mm displacement. These results indicate that 3D printed GelMA MNs have great potential for transdermal delivery of various therapeutics. 
    more » « less
  3. Minimally invasive endovascular therapy (MIET) is an innovative technique that utilizes percutaneous access and transcatheter implantation of medical devices to treat vascular diseases. However, conventional devices often face limitations such as incomplete or suboptimal treatment, leading to issues like recanalization in brain aneurysms, endoleaks in aortic aneurysms, and paravalvular leaks in cardiac valves. In this study, we introduce a new metastructure design for MIET employing re-entrant honeycomb structures with negative Poisson's ratio (NPR), which are initially designed through topology optimization and subsequently mapped onto a cylindrical surface. Using ferromagnetic soft materials, we developed structures with adjustable mechanical properties called magnetically activated structures (MAS). These magnetically activated structures can change shape under noninvasive magnetic fields, letting them fit against blood vessel walls to fix leaks or movement issues. The soft ferromagnetic materials allow the stent design to be remotely controlled, changed, and rearranged using external magnetic fields. This offers accurate control over stent placement and positioning inside blood vessels. We performed magneto-mechanical simulations to evaluate the proposed design's performance. Experimental tests were conducted on prototype beams to assess their bending and torsional responses to external magnetic fields. The simulation results were compared with experimental data to determine the accuracy of the magneto-mechanical simulation model for ferromagnetic soft materials. After validating the model, it was used to analyze the deformation behavior of the plane matrix and cylindrical structure designs of the Negative Poisson's Ratio (NPR) metamaterial. The results indicate that the plane matrix NPR metamaterial design exhibits concurrent vertical and horizontal expansion when subjected to an external magnetic field. In contrast, the cylindrical structure demonstrates simultaneous axial and radial expansion under the same conditions. The preliminary findings demonstrate the considerable potential and practicality of the proposed methodology in the development of magnetically activated MIET devices, which offer biocompatibility, a diminished risk of adverse reactions, and enhanced therapeutic outcomes. Integrating ferromagnetic soft materials into mechanical metastructures unlocks promising opportunities for designing stents with adjustable mechanical properties, propelling the field towards more sophisticated minimally invasive vascular interventions. 
    more » « less
  4. Abstract Herein new lattice unit cells with buckling load 261–308% higher than the classical octet unit cell were reported. Lattice structures have been widely used in sandwich structures as lightweight core. While stretching dominated and bending dominated cells such as octahedron, tetrahedron and octet have been designed for lightweight structures, it is plausible that other cells exist which might perform better than the existing counterparts. Machine learning technique was used to discover new optimal unit cells. An 8-node cube containing a maximum of 27 elements, which extended into an eightfold unit cell, was taken as representative volume element (RVE). Numerous possible unit cells within the RVE were generated using permutations and combinations through MATLAB coding. Uniaxial compression tests using ANSYS were performed to form a dataset, which was used to train machine learning algorithms and form predictive model. The model was then used to further optimize the unit cells. A total of 20 optimal symmetric unit cells were predicted which showed 51–57% higher capacity than octet cell. Particularly, if the solid rods were replaced by porous biomimetic rods, an additional 130–160% increase in buckling resistance was achieved. Sandwich structures made of these 3D printed optimal symmetric unit cells showed 13–35% higher flexural strength than octet cell cored counterpart. This study opens up new opportunities to design high-performance sandwich structures. 
    more » « less
  5. Additive manufacturing, otherwise known as three-dimensional (3D) printing, is a rapidly growing technique that is increasingly used for the production of polymer products, resulting in an associated increase in plastic waste generation. Waste from a particular class of 3D-printing, known as vat photopolymerization, is of particular concern, as these materials are typically thermosets that cannot be recycled or reused. Here, we report a mechanical recycling process that uses cryomilling to generate a thermoset powder from photocured parts that can be recycled back into the neat liquid monomer resin. Mechanical recycling with three different materials is demonstrated: two commercial resins with characteristic brittle and elastic mechanical properties and a third model material formulated in-house. Studies using photocured films showed that up to 30 wt% of the model material could be recycled producing a toughness of 2.01 ± 0.55 MJ/m3, within error of neat analogues (1.65 ± 0.27 MJ/m3). Using dynamic mechanical analysis and atomic force microscopy-based infrared spectroscopy, it was determined that monomers diffuse into the recycled powder particles, creating interpenetrating networks upon ultraviolet (UV) exposure. This process mechanically adheres the particles to the matrix, preventing them from acting as failure sites under a tensile load. Finally, 3D-printing of the commercial brittle material with 10 wt% recycle content produced high quality parts that were visually similar. The maximum stress (46.7 ± 6.2 MPa) and strain at break (11.6 ± 2.3%) of 3D-printed parts with recycle content were within error the same as neat analogues (52.0 ± 1.7 MPa; 13.4 ± 1.8%). Overall, this work demonstrates mechanical recycling of photopolymerized thermosets and shows promise for the reuse of photopolymerized 3D-printing waste. 
    more » « less