Abstract Three-dimensional (3D) printing of metal components through powder bed fusion, material extrusion, and vat photopolymerization, has attracted interest continuously. Particularly, extrusion-based and photopolymerization-based processes employ metal particle-reinforced polymer matrix composites (PMCs) as raw materials. However, the resolution for extrusion-based printing is limited by the speed-accuracy tradeoff. In contrast, photopolymerization-based processes can significantly improve the printing resolution, but the filler loading of the PMC is typically low due to the critical requirement on raw materials’ rheological properties. Herein, we develop a new metal 3D printing strategy by utilizing micro-continuous liquid interface printing (μCLIP) to print PMC resins comprising nanoporous copper (NP-Cu) powders. By balancing the need for higher filler loading and the requirements on rheological properties to enable printability for the μCLIP, the compositions of PMC resin were optimized. In detail, the concentration of the NP-Cu powders in the resins can reach up to 40 wt% without sacrificing the printability and printing speed (10 μm·s−1). After sintering, 3D copper structures with microscale features (470 ± 140 μm in diameter) manifesting an average resistivity of 150 kΩ·mm can be realized. In summary, this new strategy potentially benefits the rapid prototyping of metal components with higher resolution at faster speeds. 
                        more » 
                        « less   
                    
                            
                            3D Printing of Ionic Liquid Polymer Networks for Stretchable Conductive Sensors
                        
                    
    
            Abstract Stretchable conductive materials have attracted great attention due to their potential applications as strain sensors, wearable electronics, soft robotics, and medical devices. The fabrication of these materials with customized object geometries is desirable, but the methods to achieve them are still highly limited. Additive manufacturing via vat photopolymerization can generate sophisticated object geometries, but there is still a significant need to print with materials that afford improved conductivity, mechanical properties, elastic recovery, and durability. Herein, stretchable strain sensors with a range of 3D printed designs are reported using vat photopolymerization. Ionic liquid resins are optimized for their printability using Sudan‐I as a photoabsorber and used to fabricate 3D objects that are subjected to compression, stretching, and bending loads that are detected as real‐time changes in current. Additionally, the self‐adhesive nature of these materials enables mechanically damaged structures to be mended together to regain its function as a strain sensor. These ionic liquid resins are compatible with commercial 3D printers, which enhances their applicability for on‐demand production of customized devices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1752972
- PAR ID:
- 10421050
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 8
- Issue:
- 23
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract 4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) are used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials is not addressed. Here, the fabrication of 3D printed shape memory bioplastics with photo‐activated shape recovery is reported. Protein‐based nanocomposites based on bovine serum albumin (BSA), poly (ethylene glycol) diacrylate (PEGDA), and AuNRs are developed for vat photopolymerization. These 3D printed bioplastics are mechanically deformed under high loads, and the proteins served as mechano‐active elements that unfolded in an energy‐dissipating mechanism that prevented fracture of the thermoset. The bioplastic object maintained its metastable shape‐programmed state under ambient conditions. Subsequently, up to 99% shape recovery is achieved within 1 min of irradiation with near‐infrared (NIR) light. Mechanical characterization and small angle X‐ray scattering (SAXS) analysis suggest that the proteins mechanically unfold during the shape programming step and may refold during shape recovery. These composites are promising materials for the fabrication of biodegradable shape‐morphing devices for robotics and medicine.more » « less
- 
            The additive manufacturing (AM) industry increasingly looks to differentiate itself by utilizing materials and processes that are green, clean, and sustainable. Biopolymers, bio‐sourced raw materials and light weighting of parts 3D printed with photopolymer resins each represent critical directions for the future of AM. Here, we report a series of bio‐based composite resins with soybean oil derivatives, up to 20% by weight of surface‐methacrylated micro‐crystalline cellulose (MCC) and 60% total bio‐based content for vat photopolymerization based additive manufacturing. The ultimate tensile strengths of the materials were found to increase up to 3X, the Young's moduli increased up to 10X, and the glass transition temperature increased by 11.3°C when compared to the neat resin without surface‐methacrylated MCC as a filler. Working curves and shrinkage factors were used to demonstrate how the surface‐methacrylated MCC causes changes in the dimensions of printed parts, to facilitate development of optimized print parameters based on the UV intensity of the 3D printer being used. These results will allow further development of commercial 3D printable resins with a high concentration of bio‐based fillers that print well and perform on par with conventional resins.more » « less
- 
            Abstract Atomically thin materials, leveraging their low‐dimensional geometries and superior mechanical properties, are amenable to exquisite strain manipulation with a broad tunability inaccessible to bulk or thin‐film materials. Such capability offers unexplored possibilities for probing intriguing physics and materials science in the 2D limit as well as enabling unprecedented device applications. Here, the strain‐engineered anisotropic optical and electrical properties in solution‐grown, sub‐millimeter‐size 2D Te are systematically investigated through designing and introducing a controlled buckled geometry in its intriguing chiral‐chain lattice. The observed Raman spectra reveal anisotropic lattice vibrations under the corresponding straining conditions. The feasibility of using buckled 2D Te for ultrastretchable strain sensors with a high gauge factor (≈380) is further explored. 2D Te is an emerging material boasting attractive characteristics for electronics, sensors, quantum devices, and optoelectronics. The results suggest the potential of 2D Te as a promising candidate for designing and implementing flexible and stretchable devices with strain‐engineered functionalities.more » « less
- 
            Additive manufacturing, otherwise known as three-dimensional (3D) printing, is a rapidly growing technique that is increasingly used for the production of polymer products, resulting in an associated increase in plastic waste generation. Waste from a particular class of 3D-printing, known as vat photopolymerization, is of particular concern, as these materials are typically thermosets that cannot be recycled or reused. Here, we report a mechanical recycling process that uses cryomilling to generate a thermoset powder from photocured parts that can be recycled back into the neat liquid monomer resin. Mechanical recycling with three different materials is demonstrated: two commercial resins with characteristic brittle and elastic mechanical properties and a third model material formulated in-house. Studies using photocured films showed that up to 30 wt% of the model material could be recycled producing a toughness of 2.01 ± 0.55 MJ/m3, within error of neat analogues (1.65 ± 0.27 MJ/m3). Using dynamic mechanical analysis and atomic force microscopy-based infrared spectroscopy, it was determined that monomers diffuse into the recycled powder particles, creating interpenetrating networks upon ultraviolet (UV) exposure. This process mechanically adheres the particles to the matrix, preventing them from acting as failure sites under a tensile load. Finally, 3D-printing of the commercial brittle material with 10 wt% recycle content produced high quality parts that were visually similar. The maximum stress (46.7 ± 6.2 MPa) and strain at break (11.6 ± 2.3%) of 3D-printed parts with recycle content were within error the same as neat analogues (52.0 ± 1.7 MPa; 13.4 ± 1.8%). Overall, this work demonstrates mechanical recycling of photopolymerized thermosets and shows promise for the reuse of photopolymerized 3D-printing waste.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
