skip to main content


Title: Computational screening of chemically active metal center in coordinated dipyridyl tetrazine network
Abstract

Creation, stabilization, characterization, and control of single transition metal (TM) atoms may lead to significant advancement of the next-generation catalyst. Metal organic network (MON) in which single TM atoms are coordinated and separated by organic ligands is a promising class of material that may serve as a single atom catalyst. Our density functional theory-based calculations of MONs in which dipyridyl tetrazine (DPTZ) ligands coordinate with a TM atom to form linear chains leads to two types of geometries of the chains. Those with V, Cr, Mo, Fe, Co, Pt, or Pd atoms at the coordination center are planar while those with Au, Ag, Cu, or Ni are non-planar. The formation energies of the chains are high (∼2.0–7.9 eV), suggesting that these MON can be stabilized. Moreover, the calculated adsorption energies of CO and O2on the metal atom at center of the chains with the planar configuration lie in the range 1.0–3.0 eV for V, Cr, Mo, Fe, and Co at the coordination center, paving the way for future studies of CO oxidation on TM-DPTZ chains with the above five atoms at the coordination center.

 
more » « less
Award ID(s):
1955343
NSF-PAR ID:
10397598
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
Volume:
35
Issue:
15
ISSN:
0953-8984
Page Range / eLocation ID:
Article No. 154001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Binuclear alkyne manganese carbonyls of the type (RC≡CR')Mn2(CO)n(R and R'=methyl or dimethylamino;n=8, 7, 6) and their isomers related to the experimentally known (MeC2NEt2)Mn2(CO)n(n=8, 7) structures have been investigated by density functional theory. The alkyne ligand remains intact in the only low energy (Me2N)2C2Mn2(CO)8isomer, which has a central Mn2C2tetrahedrane unit and is otherwise analogous to the well‐known (alkyne)Co2(CO)6derivatives except for one more CO group per metal atom. The low‐energy structures of the unsaturated (Me2N)2C2Mn2(CO)n(n=7, 6) systems include isomers in which the nitrogen atom of one of the dimethylamino groups as well as the C≡C triple bond of the alkyne is coordinated to the central Mn2unit. In other low‐energy (Me2N)2C2Mn2(CO)n(n=7, 6) isomers the alkyne C≡C triple bond has broken completely to form two separate bridging dimethylaminocarbyne Me2NC ligands analogous to the experimentally known iron carbonyl complex (Et2NC)2Fe2(CO)6. The (alkyne)Mn2(CO)n(n=8, 7, 6) systems of the alkynes MeC≡CMe and Me2NC≡CMe with methyl substituents have significantly more complicated potential surfaces. In these systems the lowest energy isomers have bridging ligands derived from the alkyne in which one or two hydrogen atoms have migrated from a methyl group to one or both of the alkyne carbon atoms. These bridging ligands include allene, manganallyl, and vinylcarbene ligands, the first two of which have been realized experimentally in research by Adams and coworkers. Theoretical studies suggest that the mechanism for the conversion of the simple alkyne octacarbonyl (MeC2NMe2)Mn2(CO)8to the dimethylaminomanganaallyl complex Mn2(CO)7[μ‐η4‐C3H3Me2] involves decarbonylation to the heptacarbonyl and the hexacarbonyl complexes. Subsequent hydrogen migrations then occur through intermediates with C−H−Mn agostic interactions to give the final product. Eight transition states for this mechanistic sequence have been identified with activation energies of ∼20 kcal/mol for the first hydrogen migration and ∼14 kcal/mol for the second hydrogen migration.

     
    more » « less
  2. Urea synthesis through the simultaneous electrocatalytic reduction of N2and CO2molecules under ambient conditions holds great promises as a sustainable alternative to its industrial production, in which the development of stable, highly efficient, and highly selective catalysts to boost the chemisorption, activation, and coupling of inert N2and CO2molecules remains rather challenging. Herein, by means of density functional theory computations, we proposed a new class of two‐dimensional nanomaterials, namely, transition‐metal phosphide monolayers (TM2P, TM = Ti, Fe, Zr, Mo, and W), as the potential electrocatalysts for urea production. Our results showed that these TM2P materials exhibit outstanding stability and excellent metallic properties. Interestingly, the Mo2P monolayer was screened out as the best catalyst for urea synthesis due to its small kinetic energy barrier (0.35 eV) for C–N coupling, low limiting potential (−0.39 V), and significant suppressing effects on the competing side reactions. The outstanding catalytic activity of the Mo2P monolayer can be ascribed to its optimal adsorption strength with the key *NCON species due to its moderate positive charges on the Mo active sites. Our findings not only propose a novel catalyst with high‐efficiency and high‐selectivity for urea production but also further widen the potential applications of metal phosphides in electrocatalysis.

     
    more » « less
  3. Abstract

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm−2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates.

     
    more » « less
  4. Abstract

    Platinum‐based catalysts are critical to several chemical processes, but their efficiency is not satisfying enough in some cases, because only the surface active‐site atoms participate in the reaction. Henceforth, catalysts with single‐atom dispersions are highly desirable to maximize their mass efficiency, but fabricating these structures using a controllable method is still challenging. Most previous studies have focused on crystalline materials. However, amorphous materials may have enhanced performance due to their distorted and isotropic nature with numerous defects. Here reported is the facile synthesis of an atomically dispersed catalyst that consists of single Pt atoms and amorphous Fe2O3nanosheets. Rational control can regulate the morphology from single atom clusters to sub‐nanoparticles. Density functional theory calculations show the synergistic effect resulted from the strong binding and stabilization of single Pt atoms with the strong metal‐support interaction between the in situ locally anchored Pt atoms and Fe2O3lead to a weak CO adsorption. Moreover, the distorted amorphous Fe2O3with O vacancies is beneficial for the activation of O2, which further facilitates CO oxidation on nearby Pt sites or interface sites between Pt and Fe2O3, resulting in the extremely high performance for CO oxidation of the atomic catalyst.

     
    more » « less
  5. Abstract

    A computational search for stable structures among both α and β phases of ternary ATB4borides (A= Mg, Ca, Sr, Ba, Al, Ga, and Zn,Tis3dor4dtransition elements) has been performed. We found that α-ATB4compounds withA= Mg, Ca, Al, andT = V, Cr, Mn, Fe, Ni, and Co form a family of structurally stable or almost stable materials. These systems are metallic in non-magnetic states and characterized by the formation of the localized molecular-like state of3dtransition metal atom dimers, which leads to the appearance of numerous Van Hove singularities in the electronic spectrum. The closeness of such singularities to the Fermi level can be easily tuned by electron doping. For the atoms in the middle of the3drow (Cr, Mn, and Fe), these singularities led to magnetic instabilities and magnetic ground states with a weakly metallic or semiconducting nature. Such states appear as non-trivial coexistence of the different spin ladders formed by magnetic dimers of3delements. These magnetic states can be characterized as an analog of the spin glass state. Experimental attempts to produce MgFeB4and associated challenges are discussed, and promising directions for further synthetic studies are formulated.

     
    more » « less