skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Unprecedented 21st century heat across the Pacific Northwest of North America
Abstract

Extreme summer temperatures are increasingly common across the Northern Hemisphere and inflict severe socioeconomic and biological consequences. In summer 2021, the Pacific Northwest region of North America (PNW) experienced a 2-week-long extreme heatwave, which contributed to record-breaking summer temperatures. Here, we use tree-ring records to show that summer temperatures in 2021, as well as the rate of summertime warming during the last several decades, are unprecedented within the context of the last millennium for the PNW. In the absence of committed efforts to curtail anthropogenic emissions below intermediate levels (SSP2–4.5), climate model projections indicate a rapidly increasing risk of the PNW regularly experiencing 2021-like extreme summer temperatures, with a 50% chance of yearly occurrence by 2050. The 2021 summer temperatures experienced across the PNW provide a benchmark and impetus for communities in historically temperate climates to account for extreme heat-related impacts in climate change adaptation strategies.

 
more » « less
Award ID(s):
2012482 1759629 1803995
PAR ID:
10397643
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Volume:
6
Issue:
1
ISSN:
2397-3722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Increasing temperatures and extreme heat episodes have become more common with climate change. While forests are known to buffer increasing temperatures (relative to non-forested areas), whether this buffering is maintained under extreme temperature events is relatively unknown. Here we assess whether forests continue to buffer microclimate (specifically temperatures) during an extreme heat event: the Pacific Northwest (PNW) heat dome in June 2021. We use a combination of ground-based and regional climate data and find that forest understories were 3 °C cooler than a clear-cut area and 4 °C cooler than regional temperatures during the PNW heat dome. By examining forests with different levels of canopy cover we also found that the buffering capacity of forests is greater under denser canopies even under extreme heat events. Additionally, we found vertical variation in thermal buffering, with the greatest amount of buffering at the surface of the forest floor. Overall, our findings suggest that temperate coastal forests, that are known to buffer average temperatures, can also act as microclimate buffers during extreme heat events like the heat dome that occurred in the PNW in 2021. This could be good news for forest dwelling organisms that are sensitive to such extreme heat events.

     
    more » « less
  2. Abstract

    The United States (U.S.) West Coast power system is strongly influenced by variability and extremes in air temperatures (which drive electricity demand) and streamflows (which control hydropower availability). As hydroclimate changes across the West Coast, a combination of forces may work in tandem to make its bulk power system more vulnerable to physical reliability issues and market price shocks. In particular, a warmer climate is expected to increase summer cooling (electricity) demands and shift the average timing of peak streamflow (hydropower production) away from summer to the spring and winter, depriving power systems of hydropower when it is needed the most. Here, we investigate how climate change could alter interregional electricity market dynamics on the West Coast, including the potential for hydroclimatic changes in one region (e.g., Pacific Northwest (PNW)) to “spill over” and cause price and reliability risks in another (e.g., California). We find that the most salient hydroclimatic risks for the PNW power system are changes in streamflow, while risks for the California system are driven primarily by changes in summer air temperatures, especially extreme heat events that increase peak system demand. Altered timing and amounts of hydropower production in the PNW do alter summer power deliveries into California but show relatively modest potential to impact prices and reliability there. Instead, our results suggest future extreme heat in California could exert a stronger influence on prices and reliability in the PNW, especially if California continues to rely on its northern neighbor for imported power to meet higher summer demands.

     
    more » « less
  3. Abstract

    Extreme heat events are occurring more frequently and with greater intensity due to climate change. They result in increased heat stress to populations causing human health impacts and heat-related deaths. The urban environment can also exacerbate heat stress because of man-made materials and increased population density. Here we investigate the extreme heatwaves in the western U.S. during the summer of 2021. We show the atmospheric scale interactions and spatiotemporal dynamics that contribute to increased temperatures across the region for both urban and rural environments. In 2021, daytime maximum temperatures during heat events in eight major cities were 10–20 °C higher than the 10-year average maximum temperature. We discuss the temperature impacts associated with processes across scales: climate or long-term change, the El Niño–Southern Oscillation, synoptic high-pressure systems, mesoscale ocean/lake breezes, and urban climate (i.e., urban heat islands). Our findings demonstrate the importance of scale interactions impacting extreme heat and the need for holistic approaches in heat mitigation strategies.

     
    more » « less
  4. Abstract

    The Electric Reliability Council of Texas (ERCOT) manages the electric power across most of Texas. They make short-term assessments of electricity demand on the basis of historical weather over the last two decades, thereby ignoring the effects of climate change and the possibility of weather variability outside the recent historical range. In this paper, we develop an empirical method to predict the impact of weather on energy demand. We use that with a large ensemble of climate model runs to construct a probability distribution of power demand on the ERCOT grid for summer and winter 2021. We find that the most severe weather events will use 100% of available power—if anything goes wrong, as it did during the 2021 winter, there will not be sufficient available power. More quantitatively, we estimate a 5% chance that maximum power demand would be within 4.3 and 7.9 GW of ERCOT’s estimate of best-case available resources during summer and winter 2021, respectively, and a 20% chance it would be within 7.1 and 17 GW. The shortage of power on the ERCOT grid is partially hidden by the fact that ERCOTs seasonal assessments, which are based entirely on historical weather, are too low. Prior to the 2021 winter blackout, ERCOT forecast an extreme peak load of 67 GW. In reality, we estimate hourly peak demand was 82 GW, 22% above ERCOT’s most extreme forecast and about equal to the best-case available power. Given the high stakes, ERCOT should develop probabilistic estimates using modern scientific tools to predict the range of power demand more accurately.

     
    more » « less
  5. ABSTRACT

    Many insects inhabiting temperate climates are faced with changing environmental conditions throughout the year. Depending on the species, these environmental fluctuations can be experienced within a single generation or across multiple generations. Strategies for dealing with these seasonal changes vary across populations. Drosophila mojavensis is a cactophilic Drosophila species endemic to the Sonoran Desert. The Sonoran Desert regularly reaches temperatures of 50°C in the summer months. As individuals of this population are rare to collect in the summer months, we simulated the cycling temperatures experienced by D. mojavensis in the Sonoran Desert from April to July (four generations) in a temperature- and light-controlled chamber, to understand the physiological and life history changes that allow this population to withstand these conditions. In contrast to our hypothesis of a summer aestivation, we found that D. mojavensis continue to reproduce during the summer months, albeit with lower viability, but the adult survivorship of the population is highly reduced during this period. As expected, stress resistance increased during the summer months in both the adult and the larval stages. This study examines several strategies for withstanding the Sonoran Desert summer conditions which may be informative in the study of other desert endemic species.

     
    more » « less