skip to main content


This content will become publicly available on December 1, 2024

Title: Self-transport of swimming bacteria is impaired by porous microstructure
Abstract Motility is a fundamental survival strategy of bacteria to navigate porous environments, where they mediate essential biogeochemical processes in quiescent wetlands and sediments. However, a comprehensive understanding of the mechanisms regulating self-transport in the confined interstices of porous media is lacking, and determining the interactions between cells and surfaces of the solid matrix becomes paramount. Here, we precisely track the movement of bacteria ( Magnetococcus marinus ) through a series of microfluidic porous media with broadly varying geometries and show how successive scattering events from solid surfaces decorrelate cell motion. Ordered versus disordered media impact the cells’ motility over short ranges, but their large-scale transport properties are regulated by the cutoff of their persistent motility. An effective mean free path is established as the key geometrical parameter controlling cell transport, and we implement a theoretical model that universally predicts the effective cell diffusion for the diverse geometries studied here. These results aid in our understanding of the physical ecology of swimming cells, and their role in environmental and health hazards in stagnant porous media.  more » « less
Award ID(s):
1511340 1554095 1701392 1829827 2027410
NSF-PAR ID:
10397675
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communications Physics
Volume:
6
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The spread of pathogenic bacteria in unsaturated porous media, where air and liquid coexist in pore spaces, is the major cause of soil contamination by pathogens, soft rot in plants, food spoilage, and many pulmonary diseases. However, visualization and fundamental understanding of bacterial transport in unsaturated porous media are currently lacking, limiting the ability to address the above contamination and disease related issues. Here, we demonstrate a previously unreported mechanism by which bacterial cells are transported in unsaturated porous media. We discover that surfactant-producing bacteria can generate flows along corners through surfactant production that changes the wettability of the solid surface. The corner flow velocity is on the order of several mm/h, which is the same order of magnitude as bacterial swarming, one of the fastest known modes of bacterial surface translocation. We successfully predict the critical corner angle for bacterial corner flow to occur based on the biosurfactant-induced change in the contact angle of the bacterial solution on the solid surface. Furthermore, we demonstrate that bacteria can indeed spread by producing biosurfactants in a model soil, which consists of packed angular grains. In addition, we demonstrate that bacterial corner flow is controlled by quorum sensing, the cell-cell communication process that regulates biosurfactant production. Understanding this previously unappreciated bacterial transport mechanism will enable more accurate predictions of bacterial spreading in soil and other unsaturated porous media. 
    more » « less
  2. The spread of pathogenic bacteria in unsaturated porous media, where air and liquid coexist in pore spaces, is the major cause of soil contamination by pathogens, soft rot in plants, food spoilage, and many pulmonary diseases. However, visualization and fundamental understanding of bacterial transport in unsaturated porous media are currently lacking, limiting the ability to address the above contamination- and disease-related issues. Here, we demonstrate a previously unreported mechanism by which bacterial cells are transported in unsaturated porous media. We discover that surfactant-producing bacteria can generate flows along corners through surfactant production that changes the wettability of the solid surface. The corner flow velocity is on the order of several millimeters per hour, which is the same order of magnitude as bacterial swarming, one of the fastest known modes of bacterial surface translocation. We successfully predict the critical corner angle for bacterial corner flow to occur based on the biosurfactant-induced change in the contact angle of the bacterial solution on the solid surface. Furthermore, we demonstrate that bacteria can indeed spread by producing biosurfactants in a model soil, which consists of packed angular grains. In addition, we demonstrate that bacterial corner flow is controlled by quorum sensing, the cell–cell communication process that regulates biosurfactant production. Understanding this previously unappreciated bacterial transport mechanism will enable more accurate predictions of bacterial spreading in soil and other unsaturated porous media.

     
    more » « less
  3. Abstract

    Directed motility enables swimming microbes to navigate their environment for resources via chemo-, photo-, and magneto-taxis. However, directed motility competes with fluid flow in porous microbial habitats, affecting biofilm formation and disease transmission. Despite this broad importance, a microscopic understanding of how directed motility impacts the transport of microswimmers in flows through constricted pores remains unknown. Through microfluidic experiments, we show that individual magnetotactic bacteria directed upstream through pores display three distinct regimes, whereby cells swim upstream, become trapped within a pore, or are advected downstream. These transport regimes are reminiscent of the electrical conductivity of a diode and are accurately predicted by a comprehensive Langevin model. The diode-like behavior persists at the pore scale in geometries of higher dimension, where disorder impacts conductivity at the sample scale by extending the trapping regime over a broader range of flow speeds. This work has implications for our understanding of the survival strategies of magnetotactic bacteria in sediments and for developing their use in drug delivery applications in vascular networks.

     
    more » « less
  4. Abstract

    Particulate organic carbon settling through the marine water column is a key process that regulates the global climate by sequestering atmospheric carbon. The initial colonization of marine particles by heterotrophic bacteria represents the first step in recycling this carbon back to inorganic constituents—setting the magnitude of vertical carbon transport to the abyss. Here, we demonstrate experimentally using millifluidic devices that, although bacterial motility is essential for effective colonization of a particle leaking organic nutrients into the water column, chemotaxis specifically benefits at intermediate and higher settling velocities to navigate the particle boundary layer during the brief window of opportunity provided by a passing particle. We develop an individual-based model that simulates the encounter and attachment of bacterial cells with leaking marine particles to systematically evaluate the role of different parameters associated with bacterial run-and-tumble motility. We further use this model to explore the role of particle microstructure on the colonization efficiency of bacteria with different motility traits. We find that the porous microstructure facilitates additional colonization by chemotactic and motile bacteria, and fundamentally alters the way nonmotile cells interact with particles due to streamlines intersecting with the particle surface.

     
    more » « less
  5. Abstract

    Microorganisms navigate and divide on surfaces to form multicellular structures called biofilms, the most widespread survival strategy found in the bacterial world. One common assumption is that cellular components guide the spatial architecture and arrangement of multiple species in a biofilm. However, bacteria must contend with mechanical forces generated through contact with surfaces and under fluid flow, whose contributions to colonization patterns are poorly understood. Here, we show how the balance between motility and flow promotes the emergence of morphological patterns inCaulobacter crescentusbiofilms. By modeling transport of single cells by flow and Brownian-like swimming, we show that the emergence of these patterns is guided by an effective Péclet number. By analogy with transport phenomena we show that, counter-intuitively, fluid flow represses mixing of distinct clonal lineages, thereby affecting the interaction landscapes between biofilm-dwelling bacteria. This demonstrates that hydrodynamics influence species interaction and evolution within surface-associated communities.

     
    more » « less