skip to main content


Title: Shear-Based Deformation Processing of Age-Hardened Aluminum Alloy for Single-Step Sheet Production
Abstract Shear-based deformation processing by hybrid cutting-extrusion and free machining are used to make continuous strip, of thickness up to 1 mm, from low-workability AA6013-T6 in a single deformation step. The intense shear can impose effective strains as large as 2 in the strip without pre-heating of the workpiece. The creation of strip in a single step is facilitated by three factors inherent to the cutting deformation zone: highly confined shear deformation, in situ plastic deformation-induced heating, and high hydrostatic pressure. The hybrid cutting-extrusion, which employs a second die located across from the primary cutting tool to constrain the chip geometry, is found to produce strip with smooth surfaces (Sa < 0.4 μm) that is similar to cold-rolled strip. The strips show an elongated grain microstructure that is inclined to the strip surfaces—a shear texture—that is quite different from rolled sheet. This shear texture (inclination) angle is determined by the deformation path. Through control of the deformation parameters such as strain and temperature, a range of microstructures and strengths could be achieved in the strip. When the cutting-based deformation was done at room temperature, without workpiece preheating, the starting T6 material was further strengthened by as much as 30% in a single step. In elevated-temperature cutting-extrusion, dynamic recrystallization was observed, resulting in a refined grain size in the strip. Implications for deformation processing of age-hardenable Al alloys into sheet form, and microstructure control therein, are discussed.  more » « less
Award ID(s):
2100568
NSF-PAR ID:
10397681
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
144
Issue:
6
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a recent work, we have reported outstanding strength and work hardening exhibited by a metastable high entropy alloy (HEA), Fe42Mn28Co10Cr15Si5 (in at. %), undergoing the strain-induced martensitic transformation from metastable gamma austenite (γ) to stable epsilon martensite (ε). However, the alloy exhibited poor ductility, which was attributed to the presence of the brittle sigma (σ) phase in its microstructure. The present work reports the evolution of microstructure, strength, and ductility of a similar HEA, Fe38.5Mn20Co20Cr15Si5Cu1.5 (in at. %), designed to suppress the formation of σ phase. A cast and then rolled plate of the alloy was processed into four conditions by annealing for 10 and 30 min at 1100 °C and by friction stir processing (FSP) at tool rotation rates of 150 and 400 revolutions per minute (RPM) to facilitate detailed examinations of variable initial grain structures. Neutron diffraction and electron microscopy were employed to characterize the microstructure and texture evolution. The initial materials had variable grain size but nearly 100% γ structure. Diffusionless strain induced γ→ε phase transformation took place under compression with higher rate initially and slower rate at the later stages of deformation, independent on the initial grain size. The transformation facilitated part of plastic strain accommodation and rapid strain hardening owing to a transformation-induced dynamic Hall-Petch-type barrier effect, increase in dislocation density, and texture. The peak strength of nearly 2 GPa was achieved under compression using the structure created by double pass FSP (150 RPM followed by 150 RPM). Remarkably, the tensile elongation exhibited by the alloy was nearly 20% with fracture surfaces featuring a combination of ductile dimples and cleavage. 
    more » « less
  2. Abstract

    The magnesium alloy AZ31, which has undergone high-pressure torsion processing, was subjected to in situ annealing microbeam synchrotron high-energy X-ray diffraction and compared to the as-received rolled sheet material that was investigated through in situ neutron diffraction. While the latter only exhibits thermal expansion and minor recovery, the nanostructured specimen displays a complex evolution, including recovery, strong recrystallization, phase transformations, and various regimes of grain growth. Nanometer-scale grain sizes, determined using Williamson–Hall analysis, exhibit seamless growth, aligning with the transition to larger grains, as assessed through the occupancy of single-grain reflections on the diffraction rings. The study uncovers strain anomalies resulting from thermal expansion, segregation of Al atoms, and the kinetics of vacancy creation and annihilation. Notably, a substantial number of excess vacancies were generated through high-pressure torsion and maintained for driving the recrystallization and forming highly activated volumes for diffusion and phase precipitation during heating. The unsystematic scatter observed in the Williamson–Hall plot indicates high dislocation densities following severe plastic deformation, which significantly decrease during recrystallization. Subsequently, dislocations reappear during grain growth, likely in response to torque gradients in larger grains. It is worth noting that the characteristics of unsystematic scatter differ for dislocations created at high and low temperatures, underscoring the strong temperature dependence of slip system activation.

    Graphical Abstract

     
    more » « less
  3. The cold angular rolling process (CARP) is being developed as a continuous severe plastic deformation technique, which can process metal sheets without any length limitations at room temperature. CARP contains cold rolling and equal‐channel angular process components. The sheet thickness is kept consistent before and after CARP, allowing multiple passes of the sheet. The desired microstructure and mechanical properties can be achieved in the processed metallic sheets. The current study is aimed to evaluate the capability of CARP by processing copper sheets with different sheet widths for repetitive passes. The CARP‐treated sheets are examined by lab‐scale X‐ray and high‐energy synchrotron X‐ray diffraction to investigate the evolution in dislocation density, texture, and strain anisotropy, and by tensile testing to identify the bulk mechanical properties. The digital image correlation method is applied to tensile testing so that strain localization within the sample gauge is visualized and deformation behavior is evaluated after yielding till postnecking by estimating the hardening exponent and strain hardening rate of the CARP‐treated sheet. Comparing the reported continuous and multiple‐step processes on Cu and its alloys, the present study confirms that the CARP is potentially a useful sheet process for strengthening ductile metals.

     
    more » « less
  4. Abstract This paper presents an experimental study on a novel mechanical surface treatment process, namely piezo vibration striking treatment (PVST), which is realized by a piezo stack vibration device installed on a computer numerical control (CNC) machine. Unlike other striking-based surface treatments, PVST employs non-resonant mode piezo vibration to induce controllable tool strikes on the workpiece surface. In this study, an experimental setup of PVST is implemented. Four types of experiments, i.e., tool-surface approaching, single-spot striking, one-dimensional (1D) scan striking, and 2D scan striking, are conducted to investigate the relationships among the striking force, tool vibration displacement, and surface deformation in PVST. The study shows that PVST can induce strikes with consistent intensity in each cycle of tool vibration. Both the striking intensity and striking location can be well controlled. Such process capability is particularly demonstrated by the resulting texture and roughness of the treated surfaces. Moreover, two linear force relationships have been found in PVST. The first linear relationship is between the striking force and the reduction in vibration amplitude during striking. The second one is between the striking force and the permanent indentation depth created by the strike. These linear force relationships offer the opportunity to realize real-time monitoring and force-based feedback control of PVST. This study is the first step toward developing PVST as a more efficient deformation-based surface modification process. 
    more » « less
  5. Abstract

    Next‐generation, high‐efficiency energy storage and conversion systems require development of lithium metal batteries. But the high cost of production and constraints on thickness of lithium (anode) foils continue to limit adoption for integration into battery cell architectures. Here, a novel lithium anode manufacturing solution is demonstrated – single‐step production of ultrathin gauge foil formats directly from solid ingot. Hybrid cutting‐based deformation processes, involving large plastic strains and strain rates, produce foil to sub‐10 µm thickness, with surface quality even superior to present Li anode processing routes. Energy analysis shows the single‐stage processing is ≈50% more efficient than conventional processing by extrusion‐rolling. Through in situ force measurements and high‐speed imaging of the cutting it also characterize – for the first time – the flow stress of Li to strain rates of 800 sec−1, revealing a power‐law relationship. The results present a paradigm shift in manufacturing and integration of solid lithium anodes for energy applications.

     
    more » « less