skip to main content


This content will become publicly available on August 1, 2024

Title: Why rolled Mg-Al-Ca-Mn alloys are less responsive to aging as compared to the extruded
Dilute Mg-Al-Ca-Mn alloys exhibit excellent strength-ductility combinations in the peak-aged condition due to ordered, single atomic layer Guinier-Preston (GP) zones. The present work explains why rolled sheet material is softer and less responsive to aging, as compared to extruded. Using crystal-plasticity modeling, it is shown that the initial texture of the rolled material permits the soft modes, basal slip and twinning, to accommodate more of the strain during in-plane tension, and they are less responsive to hardening by the finely dispersed GP zones. Even with the same number density of GP zones, the extruded material is stronger in tension along the extrusion axis due to an initial texture which forces higher relative activity of prismatic slip, a mode previously shown to be strongly affected by the GP zones. The present work reemphasizes the significant role of the initial texture in determining the strength and anisotropy of non-cubic metals and alloys.  more » « less
Award ID(s):
1921926
NSF-PAR ID:
10490800
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Scripta Materialia
Volume:
233
Issue:
C
ISSN:
1359-6462
Page Range / eLocation ID:
115513
Subject(s) / Keyword(s):
["Texture","Age-hardening","Crystal plasticity","GP zone"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The effect of initial texture on cyclic deformation behavior of extruded ZK60 magnesium (Mg) alloy was experimentally investigated under strain‐controlled loading with the strain amplitudes at 4%, 1%, and 0.35%. The testing specimens were taken from extrusion direction (ED), transverse direction (TD), and a material precompressed to 9.4% along the ED (ED−9.4%). At a high strain amplitude of 4%, the cyclic deformation modes of ED and ED−9.4%specimens are similar, and they experience twinning exhaustion → slip and detwinning exhaustion → slip during each loading cycle. At a medium strain amplitude of 1%, twinning‐detwinning is involved in the cyclic deformation, but different deformation mechanisms were observed in the 3 different specimens. Partial twinning‐complete detwinning mode dominates the cyclic deformation in the ED specimen, while partial detwinning‐retwinning mode occurs in the ED−9.4%specimen. For the TD specimen, both basal slip andtension twinning occur during cyclic deformation. At a low strain amplitude of 0.35%, dislocation slips dominate the deformation for the ED specimen with a few observable tension twins. For the ED−9.4%specimen, initially twined texture increases the ductility of the material and enhances fatigue life as compared with the other 2 specimens.

     
    more » « less
  2. null (Ed.)
    Stress-strain responses and twinning characteristics are studied for a rolled AZ31B magnesium alloy under three different stress states: tension along the normal direction (NDT), compression along the rolled direction (RDC), and torsion about the normal direction (NDTOR) using companion specimens interrupted at incremental strain levels. Tension twinning is extensively induced in twinning-favorable NDT and RDC. All the six variants of tension twin are activated under NDT, whereas a maximum of four variants is activated under RDC. Under NDTOR, both tension twins and compression twins are activated at relatively large strains and twinning occurs in a small fraction of favored grains rather than in the majority of grains. Secondary and tertiary twins are observed in the favorably-orientated grains at high strain levels. Deformation under each stress state shows three stages of strain hardening rate: fast decrease (Stage I), sequential increase (Stage II), and progressive decrease (Stage III). The increase in the hardening rate, which is more significant under NDT and RDC as compared to NDTOR, is attributed to the hardening effect of twin boundaries and twinning texture-induced slip activities. The hardening effect of twin boundaries include the dynamic Hall-Petch hardening induced by the multiplication of twin boundaries (TBs) and twin-twin boundaries (TTBs) as well as the hardening effect associated with the energetically unfavorable TTB formation. When the applied plastic strain is larger than 0.05 under NDT and RDC, the tension twin volume fraction is higher than 50%. The twinning-induced texture leads to the activation of non-basal slips mainly in the twinned volume, i.e. prismatic slips under NDT and pyramidal slips under RDC. The low work hardening under NDTOR is due to the prevailing basal slips with reduced twinning activities under NDTOR. 
    more » « less
  3. The present work mainly investigated the effect of extrusion temperatures on the microstructure and mechanical properties of Mg-1.3Zn-0.5Ca (wt.%) alloys. The alloys were subjected to extrusion at 300 °C, 350 °C, and 400 °C with an extrusion ratio of 9.37. The results demonstrated that both the average size and volume fraction of dynamic recrystallized (DRXed) grains increased with increasing extrusion temperature (DRXed fractions of 0.43, 0.61, and 0.97 for 300 °C, 350 °C, and 400 °C, respectively). Moreover, the as-extruded alloys exhibited a typical basal fiber texture. The alloy extruded at 300 °C had a microstructure composed of fine DRXed grains of ~1.54 µm and strongly textured elongated unDRXed grains. It also had an ultimate tensile strength (UTS) of 355 MPa, tensile yield strength (TYS) of 284 MPa, and an elongation (EL) of 5.7%. In contrast, after extrusion at 400 °C, the microstructure was almost completely DRXed with a greatly weakened texture, resulting in an improved EL of 15.1% and UTS of 274 MPa, TYS of 220 MPa. At the intermediate temperature of 350 °C, the alloy had a UTS of 298 MPa, TYS of 234 MPa, and EL of 12.8%. 
    more » « less
  4. In a recent work, we have reported outstanding strength and work hardening exhibited by a metastable high entropy alloy (HEA), Fe42Mn28Co10Cr15Si5 (in at. %), undergoing the strain-induced martensitic transformation from metastable gamma austenite (γ) to stable epsilon martensite (ε). However, the alloy exhibited poor ductility, which was attributed to the presence of the brittle sigma (σ) phase in its microstructure. The present work reports the evolution of microstructure, strength, and ductility of a similar HEA, Fe38.5Mn20Co20Cr15Si5Cu1.5 (in at. %), designed to suppress the formation of σ phase. A cast and then rolled plate of the alloy was processed into four conditions by annealing for 10 and 30 min at 1100 °C and by friction stir processing (FSP) at tool rotation rates of 150 and 400 revolutions per minute (RPM) to facilitate detailed examinations of variable initial grain structures. Neutron diffraction and electron microscopy were employed to characterize the microstructure and texture evolution. The initial materials had variable grain size but nearly 100% γ structure. Diffusionless strain induced γ→ε phase transformation took place under compression with higher rate initially and slower rate at the later stages of deformation, independent on the initial grain size. The transformation facilitated part of plastic strain accommodation and rapid strain hardening owing to a transformation-induced dynamic Hall-Petch-type barrier effect, increase in dislocation density, and texture. The peak strength of nearly 2 GPa was achieved under compression using the structure created by double pass FSP (150 RPM followed by 150 RPM). Remarkably, the tensile elongation exhibited by the alloy was nearly 20% with fracture surfaces featuring a combination of ductile dimples and cleavage. 
    more » « less
  5. null (Ed.)
    The deformation behavior of the extruded magnesium alloys Mg2Nd and Mg2Yb was investigated at room temperature. By using in situ energy-dispersive synchrotron X-ray diffraction compression and tensile tests, accompanied by Elasto-Plastic Self-Consistent (EPSC) modeling, the differences in the active deformation systems were analyzed. Both alloying elements change and weaken the extrusion texture and form precipitates during extrusion and subsequent heat treatments relative to common Mg alloys. By varying the extrusion parameters and subsequent heat treatment, the strengths and ductility can be adjusted over a wide range while still maintaining a strength differential effect (SDE) of close to zero. Remarkably, the compressive and tensile yield strengths are similar and there is no mechanical anisotropy when comparing tensile and compressive deformation, which is desirable for industrial applications. Uncommon for Mg alloys, Mg2Nd shows a low tensile twinning activity during compression tests. We show that heat treatments promote the nucleation and growth of precipitates and increase the yield strengths isotopically up to 200 MPa. The anisotropy of the yield strength is reduced to a minimum and elongations to failure of about 0.2 are still achieved. At lower strengths, elongations to failure of up to 0.41 are reached. In the Mg2Yb alloy, adjusting the extrusion parameters enhances the rare-earth texture and reduces the grain size. Excessive deformation twinning is, however, observed, but despite this the SDE is still minimized. 
    more » « less