For fast timescales or long prediction horizons, the AC optimal power flow (OPF) problem becomes a computational challenge for large-scale, realistic AC networks. To overcome this challenge, this paper presents a novel network reduction methodology that leverages an efficient mixed-integer linear programming (MILP) formulation of a Kron-based reduction that is optimal in the sense that it balances the degree of the reduction with resulting modeling errors in the reduced network. The method takes as inputs the full AC network and a pre-computed library of AC load flow data and uses the graph Laplacian to constraint nodal reductions to only be feasible for neighbors of non-reduced nodes. This results in a highly effective MILP formulation which is embedded within an iterative scheme to successively improve the Kron-based network reduction until convergence. The resulting optimal network reduction is, thus, grounded in the physics of the full network. The accuracy of the network reduction methodology is then explored for a 100+ node medium-voltage radial distribution feeder example across a wide range of operating conditions. It is finally shown that a network reduction of 25-85% can be achieved within seconds and with worst-case voltage magnitude deviation errors within any super node cluster of less than 0.01pu. These results illustrate that the proposed optimization-based approach to Kron reduction of networks is viable for larger networks and suitable for use within various power system applications.
more »
« less
Privacy Limits in Power-Law Bipartite Networks under Active Fingerprinting Attacks
This work considers necessary conditions for privacy guarantees under active fingerprinting attacks in power-law bipartite networks. The scenario arises naturally in social network analysis, tracking user mobility in wireless networks, and forensics applications, among others. A stochastic growing network generation model — called the popularity-based model — is investigated, where the bipartite network is generated iteratively, and in each iteration vertices attract new edges based on their assigned popularity values. It is shown that using the appropriate choice of initial popularity values, the node degree distribution follows a power-law distribution with arbitrary parameter α > 2, i.e. fraction of nodes with degree d is proportional to d −α . An active fingerprinting deanonymization attack strategy called the augmented information threshold attack strategy (A-ITS) is proposed which uses the attacker’s knowledge of the node degree distribution along with the concept of information values for deanonymization. Sufficient conditions for the success of the A-ITS, based on network parameters, are derived. It is shown through simulations that the proposed attack significantly outperforms the state-of-the-art attack strategies.
more »
« less
- Award ID(s):
- 1815821
- PAR ID:
- 10397708
- Date Published:
- Journal Name:
- 2022 IEEE International Symposium on Information Theory (ISIT)
- Page Range / eLocation ID:
- 2862 to 2867
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Most privacy-conscious users utilize HTTPS and an anonymity network such as Tor to mask source and destination IP addresses. It has been shown that encrypted and anonymized network traffic traces can still leak information through a type of attack called a website fingerprinting (WF) attack. The adversary records the network traffic and is only able to observe the number of incoming and outgoing messages, the size of each message, and the time difference between messages. In previous work, the effectiveness of website fingerprinting has been shown to have an accuracy of over 90% when using Tor as the anonymity network. Thus, an Internet Service Provider can successfully identify the websites its users are visiting. One main concern about website fingerprinting is its practicality. The common assumption in most previous work is that a victim is visiting one website at a time and has access to the complete network trace of that website. However, this is not realistic. We propose two new algorithms to deal with situations when the victim visits one website after another (continuous visits) and visits another website in the middle of visiting one website (overlapping visits). We show that our algorithm gives an accuracy of 80% (compared to 63% in a previous work [24]) in finding the split point which is the start point for the second website in a trace. Using our proposed “splitting” algorithm, websites can be predicted with an accuracy of 70%. When two website visits are overlapping, the website fingerprinting accuracy falls dramatically. Using our proposed “sectioning” algorithm, the accuracy for predicting the website in overlapping visits improves from 22.80% to 70%. When part of the network trace is missing (either the beginning or the end), the accuracy when using our sectioning algorithm increases from 20% to over 60%.more » « less
-
Network motifs are often called the building blocks of networks. Analysis of motifs is found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. In the context of power grids, this phenomenon of the impact of local structure has been recently documented in fragility analysis and power system classification. At the same time, most studies of power system networks still tend to focus on global topo-logical measures of power grids, often failing to unveil hidden mechanisms behind vulnerability of real power systems and their dynamic response to malfunctions. In this paper a pilot study of motif-based analysis of power grid robustness under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of power systems.more » « less
-
Abstract The popularity of Tor has made it an attractive target for a variety of deanonymization and fingerprinting attacks. Location-based path selection algorithms have been proposed as a countermeasure to defend against such attacks. However, adversaries can exploit the location-awareness of these algorithms by strategically placing relays in locations that increase their chances of being selected as a client’s guard. Being chosen as a guard facilitates website fingerprinting and traffic correlation attacks over extended time periods. In this work, we rigorously define and analyze the guard placement attack . We present novel guard placement attacks and show that three state-of-the-art path selection algorithms—Counter-RAPTOR, DeNASA, and LASTor—are vulnerable to these attacks, overcoming defenses considered by all three systems. For instance, in one attack, we show that an adversary contributing only 0.216% of Tor’s total bandwidth can attain an average selection probability of 18.22%, 84× higher than what it would be under Tor currently. Our findings indicate that existing location-based path selection algorithms allow guards to achieve disproportionately high selection probabilities relative to the cost required to run the guard. Finally, we propose and evaluate a generic defense mechanism that provably defends any path selection algorithm against guard placement attacks. We run our defense mechanism on each of the three path selection algorithms, and find that our mechanism significantly enhances the security of these algorithms against guard placement attacks with only minimal impact to the goals or performance of the original algorithms.more » « less
-
Abstract We investigate the statistical learning of nodal attribute functionals in homophily networks using random walks. Attributes can be discrete or continuous. A generalization of various existing canonical models, based on preferential attachment is studied (model class $$\mathscr {P}$$ P ), where new nodes form connections dependent on both their attribute values and popularity as measured by degree. An associated model class $$\mathscr {U}$$ U is described, which is amenable to theoretical analysis and gives access to asymptotics of a host of functionals of interest. Settings where asymptotics for model class $$\mathscr {U}$$ U transfer over to model class $$\mathscr {P}$$ P through the phenomenon of resolvability are analyzed. For the statistical learning, we consider several canonical attribute agnostic sampling schemes such as Metropolis-Hasting random walk, versions of node2vec (Grover and Leskovec, 2016) that incorporate both classical random walk and non-backtracking propensities and propose new variants which use attribute information in addition to topological information to explore the network. Estimators for learning the attribute distribution, degree distribution for an attribute type and homophily measures are proposed. The performance of such statistical learning framework is studied on both synthetic networks (model class $$\mathscr {P}$$ P ) and real world systems, and its dependence on the network topology, degree of homophily or absence thereof, (un)balanced attributes, is assessed.more » « less
An official website of the United States government

