Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work considers necessary conditions for privacy guarantees under active fingerprinting attacks in power-law bipartite networks. The scenario arises naturally in social network analysis, tracking user mobility in wireless networks, and forensics applications, among others. A stochastic growing network generation model — called the popularity-based model — is investigated, where the bipartite network is generated iteratively, and in each iteration vertices attract new edges based on their assigned popularity values. It is shown that using the appropriate choice of initial popularity values, the node degree distribution follows a power-law distribution with arbitrary parameter α > 2, i.e. fraction of nodes with degree d is proportional to d −α . An active fingerprinting deanonymization attack strategy called the augmented information threshold attack strategy (A-ITS) is proposed which uses the attacker’s knowledge of the node degree distribution along with the concept of information values for deanonymization. Sufficient conditions for the success of the A-ITS, based on network parameters, are derived. It is shown through simulations that the proposed attack significantly outperforms the state-of-the-art attack strategies.more » « less
-
In this paper, matching pairs of random graphs under the community structure model is considered. The problem emerges naturally in various applications such as privacy, image processing and DNA sequencing. A pair of randomly generated labeled graphs with pairwise correlated edges are considered. It is assumed that the graph edges are generated based on the community structure model. Given the labeling of the edges of the first graph, the objective is to recover the labels in the second graph. The problem is considered under two scenarios: i) with side-information where the community membership of the nodes in both graphs are known, and ii) without side-information where the community memberships are not known. A matching scheme is proposed which operates based on typicality of the adjacency matrices of the graphs. Achievability results are derived which provide theoretical guarantees for successful matching under specific assumptions on graph parameters. It is observed that for the proposed matching scheme, the conditions for successful matching do not change in the presence of side-information. Furthermore, a converse result is derived which characterizes a set of graph parameters for which matching is not possible.more » « less
An official website of the United States government

Full Text Available