Due to the emergence of massive real-world graphs, whose sizes may extend to terabytes, new tools must be developed to enable data scientists to handle such graphs efficiently. These graphs may include social networks, computer networks, and genomes. In this paper, we propose a novel graph package, Arachne, to make large-scale graph analytics more effortless and efficient based on the open-source Arkouda framework. Arkouda has been developed to allow users to perform massively parallel computations on distributed data with an interface similar to NumPy. In this package, we developed a fundamental sparse graph data structure and then built several useful graph algorithms around our data structure to form a basic algorithmic library. Benchmarks and tools were also developed to evaluate and demonstrate the use of our graph algorithms. The graph algorithms we have implemented thus far include breadth-first search (BFS), connected components (CC), k-Truss (KT), Jaccard coefficients (JC), triangle counting (TC), and triangle centrality (TCE). Their corresponding experimental results based on realworld and synthetic graphs are presented. Arachne is organized as an Arkouda extension package and is publicly available on GitHub (https://github.com/Bears-R-Us/arkouda-njit).
more »
« less
Essentials of Parallel Graph Analytics
We identify the graph data structure, frontiers, operators, an iterative loop structure, and convergence conditions as essential components of graph analytics systems based on the native-graph approach. Using these essential components, we propose an abstraction that captures all the significant programming models within graph analytics, such as bulk-synchronous, asynchronous, shared-memory, message-passing, and push vs. pull traversals. Finally, we demonstrate the power of our abstraction with an elegant modern C++ implementation of single-source shortest path and its required components.
more »
« less
- Award ID(s):
- 1740333
- PAR ID:
- 10397847
- Date Published:
- Journal Name:
- Proceedings of the Workshop on Graphs, Architectures, Programming, and Learning
- Page Range / eLocation ID:
- 314 to 317
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large-scale graph analytics has become increasingly common in areas like social networks, physical sciences, transportation networks, and recommendation systems. Since many such practical graphs do not fit in main memory, graph analytics performance depends on efficiently utilizing underlying storage devices. These out-of-core graph processing systems employ sharding and sub-graph partitioning to optimize for storage while relying on efficient sequential access of traditional hard disks. However, today's storage is increasingly based on solid-state drives (SSDs) that exhibit high internal parallelism and efficient random accesses. Yet, state-of-the-art graph processing systems do not explicitly exploit those properties, resulting in subpar performance. In this paper, we develop CAVE, the first graph processing engine that optimally exploits underlying SSD-based storage by harnessing the available storage device parallelism via carefully selecting which I/Os to graph data can be issued concurrently. Thus, CAVE traverses multiple paths and processes multiple nodes and edges concurrently, achieving parallelization at a granular level. We identify two key ways to parallelize graph traversal algorithms based on the graph structure and algorithm: intra-subgraph and inter-subgraph parallelization. The first identifies subgraphs that contain vertices that can be accessed in parallel, while the latter identifies subgraphs that can be processed in their entirety in parallel. To showcase the benefit of our approach, we build within CAVE parallelized versions of five popular graph algorithms (Breadth-First Search, Depth-First Search, Weakly Connected Components, PageRank, Random Walk) that exploit the full bandwidth of the underlying device. CAVE uses a blocked file format based on adjacency lists and employs a concurrent cache pool that is essential to the parallelization of graph algorithms. By experimenting with different types of graphs on three SSD devices, we demonstrate that CAVE utilizes the available parallelism, and scales to diverse real-world graph datasets. CAVE achieves up to one order of magnitude speedup compared to the popular out-of-core systems Mosaic and GridGraph, and up to three orders of magnitude speedup in runtime compared to GraphChi.more » « less
-
Analyzing large dynamic networks is an important problem with applications in a wide range of disciplines. A key operation is updating the network properties as its topology changes. In this paper we present graph sparsification as an efficient abstraction for updating the properties of dynamic networks. We demonstrate the applicability of graph sparsification in updating the connected components in random and scalefree networks on shared memory systems. Our results show that the updating is scalable (10X on 16 processors for larger networks). To the best of our knowledge this is the first parallel implementation of graph sparsification. Based on these initial results, we discuss how the current implementation can be further improved and how graph sparsification can be applied to updating other network properties.more » « less
-
Modern data analytics applications, such as knowledge graph reasoning and machine learning, typically involve recursion through aggregation. Such computations pose great challenges to both system builders and theoreticians: first, to derive simple yet powerful abstractions for these computations; second, to define and study the semantics for the abstractions; third, to devise optimization techniques for these computations. In recent work we presented a generalization of Datalog called Datalog, which addresses these challenges. Datalog is a simple abstraction, which allows aggregates to be interleaved with recursion, and retains much of the simplicity and elegance of Datalog. We define its formal semantics based on an algebraic structure called Partially Ordered Pre-Semirings, and illustrate through several examples how Datalog can be used for a variety of applications. Finally, we describe a new optimization rule for Datalog, called the FGH-rule, then illustrate the FGH-rule on several examples, including a simple magic-set rewriting, generalized semi-naïve evaluation, and a bill-of-material example, and briefly discuss the implementation of the FGH-rule and present some experimental validation of its effectiveness.more » « less
-
We consider the problem of type-directed component-based synthesis where, given a set of (typed) components and a querytype, the goal is to synthesize atermthat inhabits the query. Classical approaches based on proof search in intuitionistic logics do not scale up to the standard libraries of modern languages, which span hundreds or thousands of components. Recent graph reachability based methods proposed for Java do scale, but only apply to monomorphic data and components: polymorphic data and components infinitely explode the size of the graph that must be searched, rendering synthesis intractable. We introducetype-guided abstraction refinement(TYGAR), a new approach for scalable type-directed synthesis over polymorphic datatypes and components. Our key insight is that we can overcome the explosion by building a graph overabstract typeswhich represent a potentially unbounded set of concrete types. We show how to use graph reachability to search for candidate terms over abstract types, and introduce a new algorithm that usesproofs of untypeabilityof ill-typed candidates to iterativelyrefinethe abstraction until a well-typed result is found. We have implemented TYGAR in H+, a tool that takes as input a set of Haskell libraries and a query type, and returns a Haskell term that uses functions from the provided libraries to implement the query type. Our support for polymorphism allows H+ to work with higher-order functions and type classes, and enables more precise queries due to parametricity. We have evaluated H+ on 44 queries using a set of popular Haskell libraries with a total of 291 components. H+ returns an interesting solution within the first five results for 32 out of 44 queries. Our results show that TYGAR allows H+ to rapidly return well-typed terms, with the median time to first solution of just 1.4 seconds. Moreover, we observe that gains from iterative refinement over exhaustive enumeration are more pronounced on harder queries.more » « less
An official website of the United States government

