skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Atos: A Task-Parallel GPU Scheduler for Graph Analytics
We present Atos, a task-parallel GPU dynamic scheduling framework that is especially suited to dynamic irregular applications. Compared to the dominant Bulk Synchronous Parallel (BSP) frameworks, Atos exposes additional concurrency by supporting task-parallel formulations of applications with relaxed dependencies, achieving higher GPU utilization, which is particularly significant for problems with concurrency bottlenecks. Atos also offers implicit task-parallel load balancing in addition to data-parallel load balancing, providing users the flexibility to balance between them to achieve optimal performance. Finally, Atos allows users to adapt to different use cases by controlling the kernel strategy and task-parallel granularity. We demonstrate that each of these controls is important in practice. We evaluate and analyze the performance of Atos vs. BSP on three applications: breadth-first search, PageRank, and graph coloring. Atos implementations achieve geomean speedups of 3.44x, 2.1x, and 2.77x and peak speedups of 12.8x, 3.2x, and 9.08x across three case studies, compared to a state-of-the-art BSP GPU implementation. Beyond simply quantifying the speedup, we extensively analyze the reasons behind each speedup. This deeper understanding allows us to derive general guidelines for how to select the optimal Atos configuration for different applications. Finally, our analysis provides insights for future dynamic scheduling framework designs.  more » « less
Award ID(s):
1740333 1823037
NSF-PAR ID:
10397862
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 51st International Conference on Parallel Processing
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs because of three challenges: (1) the difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address some of these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based on sparse linear algebra, which allow graph algorithms to be expressed in a performant, succinct, composable, and portable manner. In this paper, we examine the performance challenges of a linear-algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction.Exploiting output sparsityallows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in “GraphBLAST”, the first high-performance linear algebra-based graph framework on NVIDIA GPUs that is open-source. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse andGBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework ,while offering a simpler and more concise programming model. 
    more » « less
  2. We propose a GPU fine-grained load-balancing abstraction that decouples load balancing from work processing and aims to support both static and dynamic schedules with a programmable interface to implement new load-balancing schedules. Prior to our work, the only way to unleash the GPU’s potential on irregular problems has been to workload- balance through application-specific, tightly coupled load- balancing techniques. With our open-source framework for load-balancing, we hope to improve programmers’ productivity when developing irregular-parallel algorithms on the GPU, and also improve the overall performance characteristics for such applications by allowing a quick path to experimentation with a variety of existing load-balancing techniques. Consequently, we also hope that by separating the concerns of load-balancing from work processing within our abstraction, managing and extending existing code to future architectures becomes easier. 
    more » « less
  3. Summary

    Data‐driven programming models such as many‐task computing (MTC) have been prevalent for running data‐intensive scientific applications. MTC applies over‐decomposition to enable distributed scheduling. To achieve extreme scalability, MTC proposes a fully distributed task scheduling architecture that employs as many schedulers as the compute nodes to make scheduling decisions. Achieving distributed load balancing and best exploiting data locality are two important goals for the best performance of distributed scheduling of data‐intensive applications. Our previous research proposed a data‐aware work‐stealing technique to optimize both load balancing and data locality by using both dedicated and shared task ready queues in each scheduler. Tasks were organized in queues based on the input data size and location. Distributed key‐value store was applied to manage task metadata. We implemented the technique in MATRIX, a distributed MTC task execution framework. In this work, we devise an analytical suboptimal upper bound of the proposed technique, compare MATRIX with other scheduling systems, and explore the scalability of the technique at extreme scales. Results show that the technique is not only scalable but can achieve performance within 15% of the suboptimal solution. Copyright © 2015 John Wiley & Sons, Ltd.

     
    more » « less
  4. For a CPU-GPU heterogeneous computing system, different types of processors have load balancing problems in the calculation process. What’s more, multitasking cannot be matched to the appropriate processor core is also an urgent problem to be solved. In this paper, we propose a task scheduling strategy for high-performance CPU-GPU heterogeneous computing platform to solve these problems. For the single task model, a task scheduling strategy based on loadaware for CPU-GPU heterogeneous computing platform is proposed. This strategy detects the computing power of the CPU and GPU to process specified tasks, and allocates computing tasks to the CPU and GPU according to the perception ratio. The tasks are stored in a bidirectional queue to reduce the additional overhead brought by scheduling. For the multi-task model, a task scheduling strategy based on the genetic algorithm for CPU-GPU heterogeneous computing platform is proposed. The strategy aims at improving the overall operating efficiency of the system, and accurately binds the execution relationship between different types of tasks and heterogeneous processing cores. Our experimental results show that the scheduling strategy can improve the efficiency of parallel computing as well as system performance. 
    more » « less
  5. Python's ease of use and rich collection of numeric libraries make it an excellent choice for rapidly developing scientific applications. However, composing these libraries to take advantage of complex heterogeneous nodes is still difficult. To simplify writing multi-device code, we created Parla, a heterogeneous task-based programming framework that fully supports Python's scientific programming stack. Parla's API is based on Python decorators and allows users to wrap code in Parla tasks for parallel execution. Parla arrays enable automatic movement of data between devices. The Parla runtime handles resource-aware mapping, scheduling, and execution of tasks. Compared to other Python tasking systems, Parla is unique in its parallelization of tasks within a single process, its GPU context and resource-aware runtime, and its design around gradual adoption to provide easy migration of and integration into existing Python applications. We show that Parla can achieve performance competitive with hand-optimized code while improving ease of development. 
    more » « less