We use JWST Near-Infrared Spectrograph observations from the Cosmic Evolution Early Release survey, GLASS-JWST ERS (GLASS), and JWST Advanced Deep Extragalactic Survey to measure rest-frame optical emission-line ratios of 89 galaxies atz > 4. The stacked spectra of galaxies with and without a broad-line feature reveal a difference in the [Oiii]λ4364 and Hγratios. This motivated our investigation of the [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram. We define two active galactic nucleus (AGN)/star formation (SF) classification lines based on 21,048 Sloan Digital Sky Survey galaxies atz ∼ 0. After applying a redshift correction to the AGN/SF lines, we find 69.2% of broad-line active galactic nuclei (BLAGN) continue to land in the AGN region of the diagnostic, largely due to the [Neiii]/[Oii] ratio. However, 33.0% of non-BLAGN land is in the AGN region as well. The [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram does not robustly separate BLAGN from non-broad-line galaxies atz> 4. This could be due to star-forming galaxies having harder ionization, or these galaxies contain a narrow line AGN, which are not accounted for. We further inspected galaxies without broad emission lines in each region of [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram and found that they have slightly stronger Ciii]λ1908 fluxes and equivalent width when landing in the BLAGN region. However, the cause of this higher ionization is unclear and may be revealed by observing UV lines.
more »
« less
Understanding the Nature of an Unusual Post-starburst Quasar with Exceptionally Strong Ne v Emission
Abstract We present a z = 0.94 quasar, SDSS J004846.45-004611.9, discovered in the Sloan Digital Sky Survey III (SDSS-III) BOSS survey. A visual analysis of this spectrum reveals highly broadened and blueshifted narrow emission lines, in particular, [Ne v ] λ 3426 and [O iii ] λ 5007, with outflow velocities of 4000 km s −1 , along with unusually large [Ne v ] λ 3426/[Ne iii ] λ 3869 ratios. The gas shows higher ionization at higher outflow velocities, indicating a connection between the powerful outflow and the unusual strength of the high ionization lines. The spectral energy distribution and the i − W3 color of the source reveal that it is likely a core extremely red quasar (ERQ); a candidate population of young active galactic nuclei (AGN) that are violently blowing out gas and dust from their centers. The dominance of host galaxy light in its spectrum and its fortuitous position in the SDSS S82 region allows us to measure its star formation history and investigate variability for the first time in an ERQ. Our analysis indicates that SDSS J004846.45-004611.9 underwent a short-lived starburst phase 400 Myr ago and was subsequently quenched, possibly indicating a time lag between star formation quenching and the onset of AGN activity. We also find that the strong extinction can be uniquely attributed to the AGN and does not persist in the host galaxy, contradicting a scenario where the source has recently transitioned from being a dusty submillimeter galaxy. In our relatively shallow photometric data, the source does not appear to be variable at 0.24–2.4 μ m in the rest frame, most likely due to the dominant contribution of host galaxy starlight at these wavelengths.
more »
« less
- PAR ID:
- 10397869
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 929
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 79
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context.Quasar outflows play a significant role in the active galactic nucleus (AGN) feedback, impacting the interstellar medium and potentially influencing galaxy evolution. Characterizing these outflows is essential for understanding AGN-driven processes. Aims.We aim to analyze the physical properties of the mini-broad absorption line outflow in quasar J1402+2330 using data from the Dark Energy Spectroscopic Instrument (DESI) survey. We seek to measure the outflow’s location, energetics, and potential impact on AGN feedback processes. Methods.In the spectrum of J1402+2330, we identify multiple ionic absorption lines, including ground and excited states. We measure the ionic column densities and then use photoionization models to determine the total hydrogen column density and ionization parameter of the outflow. We utilized the population ratio of the excited state to the ground state of N IIIand S IVto determine the electron number density. Results.The derived electron number density, combined with the ionization parameter, indicates an outflow distance of approximately 2.2 kpc from the central source. Having a mass outflow rate of more than one thousand solar masses per year and a kinetic energy output exceeding 5% of the Eddington luminosity, this outflow can significantly contribute to AGN feedback. Conclusions.Our findings suggest the absorption outflow in J1402+2330 plays a potentially significant role in AGN feedback processes. This study highlights the value of DESI data in exploring AGN feedback mechanisms.more » « less
-
Abstract We report the detection of an ionized gas outflow from an X-ray active galactic nucleus hosted in a massive quiescent galaxy in a protocluster at z = 3.09 (J221737.29+001823.4). It is a type-2 QSO with broad ( W 80 > 1000 km s −1 ) and strong ( log ( L [ OIII ] /erg s −1 ) ≈ 43.4) [O iii ] λ λ 4959,5007 emission lines detected by slit spectroscopy in three-position angles using Multi-Object Infra-Red Camera and Spectrograph (MOIRCS) on the Subaru telescope and the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) on the Keck-I telescope. In the all slit directions, [O iii ] emission is extended to ∼15 physical kpc and indicates a powerful outflow spreading over the host galaxy. The inferred ionized gas mass outflow rate is 22 ± 3 M ⊙ yr −1 . Although it is a radio source, according to the line diagnostics using H β , [O ii ], and [O iii ], photoionization by the central QSO is likely the dominant ionization mechanism rather than shocks caused by radio jets. On the other hand, the spectral energy distribution of the host galaxy is well characterized as a quiescent galaxy that has shut down star formation several hundred Myr ago. Our results suggest a scenario that QSOs are powered after the shutdown of the star formation and help complete the quenching of massive quiescent galaxies at high redshift.more » « less
-
ABSTRACT We have identified a broad absorption line (BAL) outflow in the HST/STIS spectrum of the quasar QSO B0254-3327B at velocity v = −3200 km s−1. The outflow has absorption troughs from ions such as Ne viii, Na ix, Si xii, and Ne v. We also report the first detection of S xiv absorption troughs, implying very high ionization. Via measurement of the ionic column densities, photoionization analysis, and determination of the electron number density of the outflow, we found the kinetic luminosity of the outflow system to be up to ∼1 per cent of the quasar’s Eddington luminosity, or ∼5 per cent of the bolometric luminosity, making it a potential contributor to AGN feedback. A solution with two ionization phases was needed, as a single phase was not sufficient to satisfy the constraints from the measured ionic column densities. We find that the ionization parameter of the very high-ionization phase of the outflow is within the expected range of an X-ray warm absorber. We also examined the physical properties of the outflow of Q0254-334 along with previously studied extreme UV outflows, with a total sample of 24 outflow systems, finding a weak negative correlation between outflow velocity and distance from the central source, with larger distances corresponding to slower velocities. The very high-ionization phase of the Q0254-334 outflow has one of the highest ionization parameters of UV absorption outflows to date, which we attribute to the presence of S xiv.more » « less
-
Abstract Despite the importance of active galactic nuclei (AGNs) in galaxy evolution, accurate AGN identification is often challenging, as common AGN diagnostics can be confused by contributions from star formation and other effects (e.g., Baldwin–Phillips–Terlevich diagrams). However, one promising avenue for identifying AGNs is “coronal emission lines” (“CLs”), which are highly ionized species of gas with ionization potentials ≥100 eV. These CLs may serve as excellent signatures for the strong ionizing continuum of AGNs. To determine if CLs are in fact strong AGN tracers, we assemble and analyze the largest catalog of optical CL galaxies using the Sloan Digital Sky Survey's Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) catalog. We detect CL emission in 71 MaNGA galaxies, out of the 10,010 unique galaxies from the final MaNGA catalog, with ≥5σconfidence. In our sample, we measure [Nev]λ3347,λ3427, [Fevii]λ3586,λ3760,λ6086, and [Fex]λ6374 emission and crossmatch the CL galaxies with a catalog of AGNs that were confirmed with broad-line, X-ray, IR, and radio observations. We find that [Nev] emission, compared to [Fevii] and [Fex] emission, is best at identifying high-luminosity AGNs. Moreover, we find that the CL galaxies with the least dust extinction yield the most iron CL detections. We posit that the bulk of the iron CLs are destroyed by dust grains in the galaxies with the highest [Oiii] luminosities in our sample, and that AGNs in the galaxies with low [Oiii] luminosities are possibly too weak to be detected using traditional techniques.more » « less
An official website of the United States government

