We present restframe optical emissionline flux ratio measurements for five
We use Hubble Space Telescope Wide Field Camera 3 G102 and G141 grism spectroscopy to measure restframe optical emissionline ratios of 533 galaxies at
 Award ID(s):
 1945546
 Publication Date:
 NSFPAR ID:
 10363236
 Journal Name:
 The Astrophysical Journal
 Volume:
 926
 Issue:
 2
 Page Range or eLocationID:
 Article No. 161
 ISSN:
 0004637X
 Publisher:
 DOI PREFIX: 10.3847
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract z > 5 galaxies observed by the James Webb Space Telescope NearInfared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several qualitycontrol and postprocessing steps to the NIRSpec pipeline reduction products in order to ensure reliablerelative flux calibration of emission lines that are closely separated in wavelength, despite the uncertainabsolute spectrophotometry of the current version of the reductions. Compared toz ∼ 3 galaxies in the literature, thez > 5 galaxies have similar [Oiii ]λ 5008/Hβ ratios, similar [Oiii ]λ 4364/Hγ ratios, and higher (∼0.5 dex) [NeIII ]λ 3870/[OII ]λ 3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [NeIII ]λ 3870/[OII ]λ 3728, [Oiii ]λ 4364/Hγ , and [Oiii ]λ 5008/Hβ emissionline ratios are consistent with an interstellar medium (ISM) that has very high ionization ( , units of cm s^{−1}), low metallicity ( $\mathrm{log}(Q)\simeq 89$Z /Z _{⊙}≲ 0.2), and very high pressure ( , units of cm^{−3}). The combination of [O $\mathrm{log}(P/k)\simeq 89$iii ]λ 4364/Hγ and [Oiii ]λ (4960 + 5008)/Hβ line ratios indicate very high electron temperatures of , further implying metallicities of $4.1<\mathrm{log}({T}_{e}/\mathrm{K})<4.4$Z /Z _{⊙}≲ 0.2 with the application of lowredshift calibrations for “T _{e}based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies atmore » 
Abstract We present a Keck/MOSFIRE restoptical composite spectrum of 16 typical gravitationally lensed starforming dwarf galaxies at 1.7 ≲
z ≲ 2.6 (z _{mean}= 2.30), all chosen independent of emissionline strength. These galaxies have a median stellar mass of and a median star formation rate of $\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.29}_{0.43}^{+0.51}$ . We measure the faint electrontemperaturesensitive [O ${\mathrm{S}\mathrm{F}\mathrm{R}}_{\mathrm{H}\alpha}^{\mathrm{m}\mathrm{e}\mathrm{d}}={2.25}_{1.26}^{+2.15}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}\phantom{\rule{0.25em}{0ex}}{\mathrm{y}\mathrm{r}}^{1}$iii ]λ 4363 emission line at 2.5σ (4.1σ ) significance when considering a bootstrapped (statisticalonly) uncertainty spectrum. This yields a directmethod oxygen abundance of ( $12+\mathrm{log}{(\mathrm{O}/\mathrm{H})}_{\mathrm{direct}}={7.88}_{0.22}^{+0.25}$ ). We investigate the applicability at high ${0.15}_{0.06}^{+0.12}\phantom{\rule{0.33em}{0ex}}{Z}_{\odot}$z of locally calibrated oxygenbased strongline metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strongline ratio. At fixedM _{*}, our composite is well represented by thez ∼ 2.3 directmethod stellar mass—gasphase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, atmore » $(\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.92}_{0.22}^{+0.31})$ 
Abstract We present a multiwavelength analysis of the galaxy cluster SPTCL J06074448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope at
z = 1.4010 ± 0.0028. The highredshift cluster shows clear signs of being relaxed with wellregulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra Xray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The coolcore nature of the cluster is supported by a centrally peaked density profile and low central entropy ( keV cm^{2}), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the Xray data, we find a masscooling rate ${K}_{0}={18}_{9}^{+11}$ yr^{−1}. From optical spectroscopy and photometry around the [O ${\stackrel{\u0307}{M}}_{\mathrm{cool}}={100}_{60}^{+90}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}$ii ] emission line, we estimate that the BCG star formation rate is yr^{−1}, roughly two orders of magnitude lower than the predicted masscooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet power ${\mathrm{SFR}}_{[\mathrm{O}\phantom{\rule{0.25em}{0ex}}\mathrm{II}]}={1.7}_{0.6}^{+1.0}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}$ erg s^{−1}, which is consistent withmore » ${P}_{\mathrm{cav}}={3.2}_{1.3}^{+2.1}\times {10}^{44}$ 
Abstract We combine our dynamical modeling blackhole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured crosscorrelation time lags and line widths to recover individual scale factors,
f , used in traditional reverberationmapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines (caramel ) studies that have utilized our methods. Aiming to improve the precision of blackhole mass estimates, as well as uncover any regularities in the behavior of the broadline region (BLR), we search for correlations betweenf and other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficient and blackhole mass, (ii) marginal evidence for a similar correlation between ${\mathrm{log}}_{10}({f}_{\mathrm{mean},\sigma})$ and blackhole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness with ${\mathrm{log}}_{10}({f}_{\mathrm{rms},\sigma})$ and ${\mathrm{log}}_{10}({f}_{\mathrm{mean},\mathrm{FWHM}})$ , and (iv) marginal evidence for an anticorrelation of inclination angle with ${\mathrm{log}}_{10}({f}_{\mathrm{rms},\mathrm{FWHM}})$ , ${\mathrm{log}}_{10}({f}_{\mathrm{mean},\mathrm{FWHM}})$ , and ${\mathrm{log}}_{10}({f}_{\mathrm{rms},\sigma})$ . Last, we find marginal evidence for a correlation between lineprofile shape, when using the rootmeansquare spectrum, ${\mathrm{log}}_{10}({f}_{\mathrm{mean},\sigma})$ , and the virial coefficient, ${\mathrm{log}}_{10}{(\mathrm{FWHM}/\sigma )}_{\mathrm{rms}}$ , and investigate how BLR properties might be related to lineprofile shape using ${\mathrm{log}}_{10}({f}_{\mathrm{rms},\sigma}more\xbb$caramel models. 
Abstract We present a detection of 21 cm emission from largescale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emissionline galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1
σ (LRG), 5.7σ (ELG), and 11.1σ (QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi ), defined as , where Ω_{Hi}is the cosmic abundance of H ${\mathit{\ue22d}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\equiv {10}^{3}\phantom{\rule{0.25em}{0ex}}{\mathrm{\Omega}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\left({b}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}+\u3008\phantom{\rule{0.25em}{0ex}}f{\mu}^{2}\u3009\right)$i ,b _{Hi}is the linear bias of Hi , and 〈f μ ^{2}〉 = 0.552 encodes the effect of redshiftspace distortions at linear order. We find for LRGs ( ${\mathit{\ue22d}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}={1.51}_{0.97}^{+3.60}$z =more »