skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simplicial cascades are orchestrated by the multidimensional geometry of neuronal complexes
Abstract Cascades over networks (e.g., neuronal avalanches, social contagions, and system failures) often involve higher-order dependencies, yet theory development has largely focused on pairwise-interaction models. Here, we develop a ‘simplicial threshold model’ (STM) for cascades over simplicial complexes that encode dyadic, triadic and higher-order interactions. Focusing on small-world models containing both short- and long-range k -simplices, we explore spatio-temporal patterns that manifest as a frustration between local and nonlocal propagations. We show that higher-order interactions and nonlinear thresholding coordinate to robustly guide cascades along a k -dimensional generalization of paths that we call ‘geometrical channels’. We also find this coordination to enhance the diversity and efficiency of cascades over a simplicial-complex model for a neuronal network, or ‘neuronal complex’. We support these findings with bifurcation theory and data-driven approaches based on latent geometry. Our findings provide fruitful directions for uncovering the multiscale, multidimensional mechanisms that orchestrate the spatio-temporal patterns of nonlinear cascades.  more » « less
Award ID(s):
2052720
PAR ID:
10397882
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Network data has become widespread, larger, and more complex over the years. Traditional network data is dyadic, capturing the relations among pairs of entities. With the need to model interactions among more than two entities, significant research has focused on higher-order networks and ways to represent, analyze, and learn from them. There are two main directions to studying higher-order networks. One direction has focused on capturing higher-order patterns in traditional (dyadic) graphs by changing the basic unit of study from nodes to small frequently observed subgraphs, called motifs. As most existing network data comes in the form of pairwise dyadic relationships, studying higher-order structures within such graphs may uncover new insights. The second direction aims to directly model higher-order interactions using new and more complex representations such as simplicial complexes or hypergraphs. Some of these models have long been proposed, but improvements in computational power and the advent of new computational techniques have increased their popularity. Our goal in this paper is to provide a succinct yet comprehensive summary of the advanced higher-order network analysis techniques. We provide a systematic review of the foundations and algorithms, along with use cases and applications of higher-order networks in various scientific domains. 
    more » « less
  2. Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the machine learning and dynamical systems literature to represent complex dynamical or sequential relationships between variables. Recently, as deep learning models have become more common, RNNs have been used to forecast increasingly complicated systems. Dynamical spatio-temporal processes represent a class of complex systems that can potentially benefit from these types of models. Although the RNN literature is expansive and highly developed, uncertainty quantification is often ignored. Even when considered, the uncertainty is generally quantified without the use of a rigorous framework, such as a fully Bayesian setting. Here we attempt to quantify uncertainty in a more formal framework while maintaining the forecast accuracy that makes these models appealing, by presenting a Bayesian RNN model for nonlinear spatio-temporal forecasting. Additionally, we make simple modifications to the basic RNN to help accommodate the unique nature of nonlinear spatio-temporal data. The proposed model is applied to a Lorenz simulation and two real-world nonlinear spatio-temporal forecasting applications. 
    more » « less
  3. BackgroundForecasting the responses of natural populations to environmental change is a key priority in the management of ecological systems. This is challenging because the dynamics of multi-species ecological communities are influenced by many factors. Populations can exhibit complex, nonlinear responses to environmental change, often over multiple temporal lags. In addition, biotic interactions, and other sources of multi-species dependence, are major contributors to patterns of population variation. Theory suggests that near-term ecological forecasts of population abundances can be improved by modelling these dependencies, but empirical support for this idea is lacking. MethodsWe test whether models that learn from multiple species, both to estimate nonlinear environmental effects and temporal interactions, improve ecological forecasts compared to simpler single species models for a semi-arid rodent community. Using dynamic generalized additive models, we analyze time series of monthly captures for nine rodent species over 25 years. ResultsModel comparisons provide strong evidence that multi-species dependencies improve both hindcast and forecast performance, as models that captured these effects gave superior predictions than models that ignored them. We show that changes in abundance for some species can have delayed, nonlinear effects on others, and that lagged, nonlinear effects of temperature and vegetation greenness are key drivers of changes in abundance for this system. ConclusionsOur findings highlight that multivariate models are useful not only to improve near-term ecological forecasts but also to ask targeted questions about ecological interactions and drivers of change. This study emphasizes the importance of jointly modelling species’ shared responses to the environment and their delayed temporal interactions when teasing apart community dynamics. 
    more » « less
  4. Simplicial neural networks (SNNs) have recently emerged as a new direction in graph learning which expands the idea of convolutional architectures from node space to simplicial complexes on graphs. Instead of predominantly assessing pairwise relations among nodes as in the current practice, simplicial complexes allow us to describe higher-order interactions and multi-node graph structures. By building upon connection between the convolution operation and the new block Hodge-Laplacian, we propose the first SNN for link prediction. Our new Block Simplicial Complex Neural Networks (BScNets) model generalizes existing graph convolutional network (GCN) frameworks by systematically incorporating salient interactions among multiple higher-order graph structures of different dimensions. We discuss theoretical foundations behind BScNets and illustrate its utility for link prediction on eight real-world and synthetic datasets. Our experiments indicate that BScNets outperforms the state-of-the-art models by a significant margin while maintaining low computation costs. Finally, we show utility of BScNets as a new promising alternative for tracking spread of infectious diseases such as COVID-19 and measuring the effectiveness of the healthcare risk mitigation strategies. 
    more » « less
  5. Despite the vast literature on network dynamics, we still lack basic insights into dynamics on higher-order structures (e.g., edges, triangles, and more generally, [Formula: see text]-dimensional “simplices”) and how they are influenced through higher-order interactions. A prime example lies in neuroscience where groups of neurons (not individual ones) may provide building blocks for neurocomputation. Here, we study consensus dynamics on edges in simplicial complexes using a type of Laplacian matrix called a Hodge Laplacian, which we generalize to allow higher- and lower-order interactions to have different strengths. Using techniques from algebraic topology, we study how collective dynamics converge to a low-dimensional subspace that corresponds to the homology space of the simplicial complex. We use the Hodge decomposition to show that higher- and lower-order interactions can be optimally balanced to maximally accelerate convergence and that this optimum coincides with a balancing of dynamics on the curl and gradient subspaces. We additionally explore the effects of network topology, finding that consensus over edges is accelerated when two-simplices are well dispersed, as opposed to clustered together. 
    more » « less