skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: A Large Population of Luminous Active Galactic Nuclei Lacking X-Ray Detections: Evidence for Heavy Obscuration?
Abstract We present a large sample of infrared-luminous candidate active galactic nuclei (AGNs) that lack X-ray detections in Chandra, XMM-Newton, and NuSTAR fields. We selected all optically detected SDSS sources with redshift measurements, combined additional broadband photometry from WISE, UKIDSS, 2MASS, and GALEX, and modeled the spectral energy distributions (SEDs) of our sample sources. We parameterize nuclear obscuration in our SEDs with and uncover thousands of powerful obscured AGNs that lack X-ray counterparts, many of which are identified as AGN candidates based on straightforward WISE photometric criteria. Using the observed luminosity correlation between rest-frame 2–10 keV ( ) and rest-frame AGN ( ), we estimate the intrinsic X-ray luminosities of our sample sources and combine these data with flux limits from X-ray catalogs to determine lower limits on nuclear obscuration. Using the ratio of intrinsic-to-observed X-ray luminosity ( ), we find a significant fraction of sources with column densities approaching  cm –2 , suggesting that multiwavelength observations are necessary to account for the population of heavily obscured AGNs. We simulate the underlying distribution for the X-ray non-detected sources in our sample through survival analysis, and confirm the presence of AGN activity via X-ray stacking. Our results point to a considerable population of extremely obscured AGNs undetected by current X-ray observatories.  more » « less
Award ID(s):
1554584
PAR ID:
10397904
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
908
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The merger of two or more galaxies can enhance the inflow of material from galactic scales into the close environments of active galactic nuclei (AGNs), obscuring and feeding the supermassive black hole (SMBH). Both recent simulations and observations of AGN in mergers have confirmed that mergers are related to strong nuclear obscuration. However, it is still unclear how AGN obscuration evolves in the last phases of the merger process. We study a sample of 60 luminous and ultra-luminous IR galaxies (U/LIRGs) from the GOALS sample observed by NuSTAR. We find that the fraction of AGNs that are Compton thick (CT; $N_{\rm H}\ge 10^{24}\rm \, cm^{-2}$) peaks at $74_{-19}^{+14}{{\ \rm per\ cent}}$ at a late merger stage, prior to coalescence, when the nuclei have projected separations (dsep) of 0.4–6 kpc. A similar peak is also observed in the median NH [$(1.6\pm 0.5)\times 10^{24}\rm \, cm^{-2}$]. The vast majority ($85^{+7}_{-9}{{\ \rm per\ cent}}$) of the AGNs in the final merger stages (dsep ≲ 10 kpc) are heavily obscured ($N_{\rm H}\ge 10^{23}\rm \, cm^{-2}$), and the median NH of the accreting SMBHs in our sample is systematically higher than that of local hard X-ray-selected AGN, regardless of the merger stage. This implies that these objects have very obscured nuclear environments, with the $N_{\rm H}\ge 10^{23}\rm \, cm^{-2}$ gas almost completely covering the AGN in late mergers. CT AGNs tend to have systematically higher absorption-corrected X-ray luminosities than less obscured sources. This could either be due to an evolutionary effect, with more obscured sources accreting more rapidly because they have more gas available in their surroundings, or to a selection bias. The latter scenario would imply that we are still missing a large fraction of heavily obscured, lower luminosity ($L_{2-10}\lesssim 10^{43}\rm \, erg\, s^{-1}$) AGNs in U/LIRGs. 
    more » « less
  2. ABSTRACT

    We present a study of optically selected dual Active Galactic Nuclei (AGN) with projected separations of 3–97 kpc. Using multiwavelength (MWL) information (optical, X-ray, mid-IR), we characterized the intrinsic nuclear properties of this sample and compared them with those of isolated systems. Among the 124 X-ray-detected AGN candidates, 52 appear in pairs and 72 as single X-ray sources. Through MWL analysis, we confirmed the presence of the AGN in >80 per cent of the detected targets in pairs (42 out of 52). X-ray spectral analysis confirms the trend of increasing AGN luminosity with decreasing separation, suggesting that mergers may have contributed to triggering more luminous AGN. Through X-ray/mid-IR ratio versus X-ray colours, we estimated a fraction of Compton-thin AGN (with 1022 cm−2 < NH < 1024 cm−2) of about 80 per cent, while about 16 per cent are Compton-thick sources (with NH > 1024 cm−2). These fractions of obscured sources are larger than those found in samples of isolated AGN, confirming that pairs of AGN show higher obscuration. This trend is further confirmed by comparing the de-reddened [O iii] emission with the observed X-ray luminosity. However, the derived fraction of Compton-thick sources in this sample at the early stages of merging is lower than that reported for late-merging dual-AGN samples. Comparing NH from X-rays with that derived from E(B − V) from narrow-line regions, we found that the absorbing material is likely to be associated with the torus or broad-line regions. We also explored the X-ray detection efficiency of dual-AGN candidates, finding that, when observed properly (at on-axis positions and with long exposures), X-ray data represent a powerful way to confirm and investigate dual-AGN systems.

     
    more » « less
  3. Abstract

    Spectral energy distributions (SEDs) from X-ray to far-infrared (FIR) wavelengths are presented for a sample of 1246 X-ray-luminous active galactic nuclei (AGNs;L0.5–10 keV> 1043erg s−1), withzspec< 1.2, selected from Stripe 82X, COSMOS, and GOODS-N/S. The rest-frame SEDs show a wide spread (∼2.5 dex) in the relative strengths of broad continuum features at X-ray, ultraviolet (UV), mid-infrared (MIR), and FIR wavelengths. A linear correlation (log–log slope of 0.7 ± 0.04) is found betweenLMIRandLX. There is significant scatter in the relation between theLUVandLXowing to heavy obscuration; however, the most luminous and unobscured AGNs show a linear correlation (log–log slope of 0.8 ± 0.06) in the relation above this scatter. The relation betweenLFIRandLXis predominantly flat, but with decreasing dispersion atLX> 1044erg s−1. The ratio between the “galaxy-subtracted” bolometric luminosity and the intrinsicLXincreases from a factor of ∼10 to 70 from logLbol/(erg s−1) = 44.5 to 46.5. Characteristic SED shapes have been determined by grouping AGNs based on relative strengths of the UV and MIR emission. The averageL1μmis constant for the majority of these SED shapes, while AGNs with the strongest UV and MIR emission have elevatedL1μm, consistent with the AGN emission dominating their SEDs at optical and near-infrared wavelengths. A strong correlation is found between the SED shape and both theLXandLbol, such thatLbol/LX= 20.4 ± 1.8, independent of the SED shape. This is consistent with an evolutionary scenario of increasingLbolwith decreasing obscuration as the AGN blows away circumnuclear gas.

     
    more » « less
  4. Abstract

    We perform X-ray spectral analyses to derive the characteristics (e.g., column density, X-ray luminosity) of ≈10,200 active galactic nuclei (AGNs) in the XMM-Spitzer Extragalactic Representative Volume Survey, which was designed to investigate the growth of supermassive black holes across a wide dynamic range of cosmic environments. Using physical torus models (e.g., Borus02) and a Bayesian approach, we uncover 22 representative Compton-thick (CT;NH> 1.5 × 1024cm−2) AGN candidates with good signal-to-noise ratios as well as a large sample of 136 heavily obscured AGNs. We also find an increasing CT fraction (fCT) from low (z< 0.75) to high (z> 0.75) redshift. Our CT candidates tend to show hard X-ray spectral shapes and dust extinction in their spectral energy distribution fits, which may shed light on the connection between AGN obscuration and host-galaxy evolution.

     
    more » « less
  5. Abstract We present an analysis of 10 ks snapshot Chandra observations of 12 shocked post-starburst galaxies, which provide a window into the unresolved question of active galactic nuclei (AGN) activity in post-starburst galaxies and its role in the transition of galaxies from active star formation to quiescence. While seven of the 12 galaxies have statistically significant detections (with two more marginal detections), the brightest only obtained 10 photons. Given the wide variety of hardness ratios in this sample, we chose to pursue a forward-modeling approach to constrain the intrinsic luminosity and obscuration of these galaxies, rather than stacking. We constrain the intrinsic luminosity of obscured power laws based on the total number of counts and spectral shape, itself mostly set by the obscuration, with hardness ratios consistent with the data. We also tested thermal models. While all the galaxies have power-law models consistent with their observations, a third of the galaxies are better fit as an obscured power law and another third are better fit as thermal emission. If these post-starburst galaxies, early in their transition, contain AGNs, then these are mostly confined to lower obscuration ( N H ≤ 10 23 cm −2 ) and lower luminosity ( L 2−10 keV ≤ 10 42 erg s −1 ). Two galaxies, however, are clearly best fit as significantly obscured AGNs. At least half of this sample shows evidence of at least low-luminosity AGN activity, though none could radiatively drive out the remaining molecular gas reservoirs. Therefore, these AGNs are more likely along for the ride, having been fed gas by the same processes driving the transition. 
    more » « less