skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Most Obscured AGNs in the XMM-SERVS Fields
Abstract We perform X-ray spectral analyses to derive the characteristics (e.g., column density, X-ray luminosity) of ≈10,200 active galactic nuclei (AGNs) in the XMM-Spitzer Extragalactic Representative Volume Survey, which was designed to investigate the growth of supermassive black holes across a wide dynamic range of cosmic environments. Using physical torus models (e.g., Borus02) and a Bayesian approach, we uncover 22 representative Compton-thick (CT;NH> 1.5 × 1024cm−2) AGN candidates with good signal-to-noise ratios as well as a large sample of 136 heavily obscured AGNs. We also find an increasing CT fraction (fCT) from low (z< 0.75) to high (z> 0.75) redshift. Our CT candidates tend to show hard X-ray spectral shapes and dust extinction in their spectral energy distribution fits, which may shed light on the connection between AGN obscuration and host-galaxy evolution.  more » « less
Award ID(s):
2106990
PAR ID:
10427232
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
951
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 27
Size(s):
Article No. 27
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dual active galactic nuclei (AGNs), which are the manifestation of two actively accreting supermassive black holes (SMBHs) hosted by a pair of merging galaxies, are a unique laboratory for studying the physics of SMBH feeding and feedback during an indispensable stage of galaxy evolution. In this work, we present NOEMA CO(2–1) observations of seven kiloparsec-scale dual-AGN candidates drawn from a recent Chandra survey of low redshift, optically classified AGN pairs. These systems are selected because they show unexpectedly low 2–10 keV X-ray luminosities for their small physical separations signifying an intermediate-to-late stage of merger. Circumnuclear molecular gas traced by the CO(2–1) emission is significantly detected in six of the seven pairs and 10 of the 14 nuclei, with an estimated mass ranging between (0.2–21) × 109M. The primary nuclei, i.e., the ones with the higher stellar velocity dispersion, tend to have a higher molecular gas mass than the secondary. Most CO-detected nuclei show a compact morphology, with a velocity field consistent with a kiloparsec-scale rotating structure. The inferred hydrogen column densities range between 5 × 1021–2 × 1023cm−2, but mostly at a few times 1022cm−2, in broad agreement with those derived from X-ray spectral analysis. Together with the relatively weak mid-infrared emission, the moderate column density argues against the prevalence of heavily obscured, intrinsically luminous AGNs in these seven systems, but favors a feedback scenario in which AGN activity triggered by a recent pericentric passage of the galaxy pair can expel circumnuclear gas and suppress further SMBH accretion. 
    more » « less
  2. Abstract We present observations of the extremely luminous but ambiguous nuclear transient (ANT) ASASSN-17jz, spanning roughly 1200 days of the object’s evolution. ASASSN-17jz was discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) in the galaxy SDSS J171955.84+414049.4 on UT 2017 July 27 at a redshift ofz= 0.1641. The transient peaked at an absoluteB-band magnitude ofMB,peak= −22.81, corresponding to a bolometric luminosity ofLbol,peak= 8.3 × 1044erg s−1, and exhibited late-time ultraviolet emission that was still ongoing in our latest observations. Integrating the full light curve gives a total emitted energy ofEtot= (1.36 ±0.08) × 1052erg, with (0.80 ± 0.02) × 1052erg of this emitted within 200 days of peak light. This late-time ultraviolet emission is accompanied by increasing X-ray emission that becomes softer as it brightens. ASASSN-17jz exhibited a large number of spectral emission lines most commonly seen in active galactic nuclei (AGNs) with little evidence of evolution. It also showed transient Balmer features, which became fainter and broader over time, and are still being detected >1000 days after peak brightness. We consider various physical scenarios for the origin of the transient, including supernovae (SNe), tidal disruption events, AGN outbursts, and ANTs. We find that the most likely explanation is that ASASSN-17jz was a SN IIn occurring in or near the disk of an existing AGN, and that the late-time emission is caused by the AGN transitioning to a more active state. 
    more » « less
  3. Abstract To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here. 
    more » « less
  4. Abstract The discovery over the last several decades of low- and moderate-luminosity active galactic nuclei (AGNs) in disk-dominated galaxies—which show no “classical” bulges—suggests that secular mechanisms represent an important growth pathway for supermassive black holes in these systems. We present new follow-up NuSTAR observations of the optically elusive AGNs in two bulgeless galaxies, NGC 4178 and J0851+3926. Galaxy NGC 4178 was originally reported as hosting an AGN based on the detection of [Nev] mid-infrared emission detected by Spitzer, and based on Chandra X-ray imaging, it has since been argued to host either a heavily obscured AGN or a supernova remnant. Galaxy J0851+3926 was originally identified as an AGN based on its Wide-Field Infrared Survey Explorer mid-IR colors, and follow-up near-infrared spectroscopy previously revealed a hidden broad-line region, offering compelling evidence for an optically elusive AGN. Neither AGN is detected within the new NuSTAR imaging, and we derive upper limits on the hard X-ray 10–24 keV fluxes of <7.41 × 10−14and <9.40 × 10−14erg cm−2s−1for the AGNs in NGC 4178 and J0851+3926, respectively. If these nondetections are due to large absorbing columns along the line of sight, the nondetections in NGC 4178 and J0851+3926 could be explained with column densities of log(NH/cm2) > 24.2 and 24.1, respectively. The nature of the nuclear activity in NGC 4178 remains inconclusive; it is plausible that the [Nev] traces a period of higher activity in the past, but that the AGN is relatively quiescent now. The nondetection in J0851+3926 and multiwavelength properties are consistent with the AGN being heavily obscured. 
    more » « less
  5. Abstract We present the first active galactic nuclei (AGN) catalog of the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX) observed between 2017 January and 2020 June. HETDEX is an ongoing spectroscopic survey (3500–5500 Å) with no target preselection based on magnitudes, colors or morphologies, enabling us to select AGN based solely on their spectral features. Both luminous quasars and low-luminosity Seyferts are found in our catalog. AGN candidates are selected with at least two significant AGN emission lines, such as the Lyαand Civλ1549 line pair, or with a single broad emission line with FWHM > 1000 km s−1. Each source is further confirmed by visual inspections. This catalog contains 5322 AGN, covering an effective sky coverage of 30.61 deg2. A total of 3733 of these AGN have secure redshifts, and we provide redshift estimates for the remaining 1589 single broad-line AGN with no crossmatched spectral redshifts from the Sloan Digital Sky Survey Data Release 14 of QSOs. The redshift range of the AGN catalog is 0.25 <z< 4.32, with a median ofz= 2.1. The bolometric luminosity range is 109–1014Lwith a median of 1012L. The medianr-band magnitude of our AGN catalog is 21.6 mag, with 34% havingr> 22.5, and 2.6% reaching the detection limit atr∼ 26 mag of the deepest imaging surveys we searched. We also provide a composite spectrum of the AGN sample covering 700–4400 Å. 
    more » « less