This paper considers optimization problems of energy demand networks including aggregators and investigates strategic behavior of the aggregators. The participants of the network are a utility company, who plays a role of energy supply source, aggregators and a large number of consumers. We suppose that the network will be optimized by price response based or, in other words, market based optimization processes. We also suppose that the aggregator has a strategic parameter in its cost function and, by choosing the parameter strategically, the aggregator will try to pursue its own benefit. This general problem formulation will apply to a specific problem setting, where the aggregator possess battery storage with different specifications: The one is high-performance and expensive and the other is low-performance and cheap. The aggregator will choose total capacity of storage to be installed and a ratio of high-performance storage to low-performance storage as the strategic parameters and try to increase its own benefit. By using numerical examples, we show that the strategic decision making by the aggregator could provide useful insights in qualitative analysis of energy demand networks.
more »
« less
Market mechanism to enable grid-aware dispatch of Aggregators in radial distribution networks
This paper presents a market-based optimization framework wherein Aggregators can compete for nodal capacity across a distribution feeder and guarantee that allocated flexible capacity cannot cause overloads or congestion. This mechanism, thus, allows Aggregators with allocated capacity to pursue a number of services at the whole-sale market level to maximize revenue of flexible resources. Based on Aggregator bids of capacity (MW) and network access price ($/MW), the distribution system operator (DSO) formulates an optimization problem that prioritizes capacity to the different Aggregators across the network while implicitly considering AC network constraints. This grid-aware allocation is obtained by incorporating a con- vex inner approximation into the optimization framework that prioritizes hosting capacity to different Aggregators. We adapt concepts from transmission-level capacity market clearing, utility demand charges, and Internet-like bandwidth allocation rules to distribution system operations by incorporating nodal voltage and transformer constraints into the optimization framework. Simulation based results on IEEE distribution networks showcase the effectiveness of the approach.
more »
« less
- Award ID(s):
- 2047306
- PAR ID:
- 10397906
- Date Published:
- Journal Name:
- 11TH BULK POWER SYSTEMS DYNAMICS AND CONTROL SYMPOSIUM
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract System design has been facing the challenges of incorporating complex dependencies between individual entities into design formulations. For example, while the decision-based design framework successfully integrated customer preference modeling into optimal design, the problem was formulated from a single entity’s perspective, and the competition between multiple enterprises was not considered in the formulation. Network science has offered several solutions for studying interdependencies in various system contexts. However, efforts have primarily focused on analysis (i.e., the forward problem). The inverse problem still remains: How can we achieve the desired system-level performance by promoting the formation of targeted relations among local entities? In this study, we answer this question by developing a network-based design framework. This framework uses network representations to characterize and capture dependencies and relations between individual entities in complex systems and integrate these representations into design formulations to find optimal decisions for the desired performance of a system. To demonstrate its utility, we applied this framework to the design for market systems with a case study on vacuum cleaners. The objective is to increase the sales of a vacuum cleaner or its market share by optimizing its design attributes, such as suction power and weight, with the consideration of market competition relations, such as inter-brand triadic competition involving three products from different brands. We solve this problem by integrating an exponential random graph model (ERGM) with a genetic algorithm. The results indicate that the new designs, which consider market competition, can effectively increase the purchase frequency of specific vacuum cleaner models and the proposed network-based design method outperforms traditional design optimization.more » « less
-
Integration of distributed renewable energy sources (D- RES) has been introduced as a viable solution to offer cheap and clean energy to customers in decentralized power system. D- RES can offer local generation to flexible customers based on their servicing deadline and constraints, benefiting both D- RES owners and customers in terms of providing economic revenue and reducing the cost of supplied energy. In this context, this paper proposes a dynamic matching framework using model predictive control (MPC) to enable local energy sharing in power system operation. The proposed matching framework matches flexible customers with D- RES to maximize social welfare in the matching market, while meeting the customers' servicing constraints prior to their deadline. Simulations are conducted on a test power system using multiple matching algorithms across different load and generation scenarios and the results highlighted the efficiency of proposed framework in matching flexible customers with the appropriate supply sources to maximize social welfare in the matching market.more » « less
-
Integration of distributed renewable energy sources (D- RES) has been introduced as a viable solution to offer cheap and clean energy to customers in decentralized power system. D- RES can offer local generation to flexible customers based on their servicing deadline and constraints, benefiting both D- RES owners and customers in terms of providing economic revenue and reducing the cost of supplied energy. In this context, this paper proposes a dynamic matching framework using model predictive control (MPC) to enable local energy sharing in power system operation. The proposed matching framework matches flexible customers with D- RES to maximize social welfare in the matching market, while meeting the customers' servicing constraints prior to their deadline. Simulations are conducted on a test power system using multiple matching algorithms across different load and generation scenarios and the results highlighted the efficiency of proposed framework in matching flexible customers with the appropriate supply sources to maximize social welfare in the matching market.more » « less
-
This paper uses convex inner approximations (CIA) of the AC power flow to tackle the optimization problem of quantifying a 3-phase distribution feeder’s capacity to host distributed energy resources (DERs). This is often connoted hosting capacity (HC), but herein we consider separative bounds for each node on positive and negative DER injections, which ensures that injections within these nodal limits satisfy feeder voltage and current limits and across nodes sum up to the feeder HC. The methodology decomposes a 3-phase feeder into separate phases and applies CIA-based techniques to each phase. An analysis is developed to determine the technical condition under which this per-phase approach can still satisfy network constraints. New approaches are then presented that modify the per-phase optimization problems to overcome conservativeness inherent to CIA methods and increase overall HC, including selectively modifying the per-phase impedances and iteratively relaxing per-phase voltage bounds. Discussion is included on trade-offs and feasibility. To validate the methodology, simulation-based analysis is conducted with the IEEE 37-node test feeder and a real 534-node unbalanced radial distribution feeder.more » « less
An official website of the United States government

