- Award ID(s):
- 1739295
- PAR ID:
- 10109192
- Date Published:
- Journal Name:
- 2018 IEEE Conference on Control Technology and Applications (CCTA)
- Page Range / eLocation ID:
- 444 to 449
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper presents a market-based optimization framework wherein Aggregators can compete for nodal capacity across a distribution feeder and guarantee that allocated flexible capacity cannot cause overloads or congestion. This mechanism, thus, allows Aggregators with allocated capacity to pursue a number of services at the whole-sale market level to maximize revenue of flexible resources. Based on Aggregator bids of capacity (MW) and network access price ($/MW), the distribution system operator (DSO) formulates an optimization problem that prioritizes capacity to the different Aggregators across the network while implicitly considering AC network constraints. This grid-aware allocation is obtained by incorporating a con- vex inner approximation into the optimization framework that prioritizes hosting capacity to different Aggregators. We adapt concepts from transmission-level capacity market clearing, utility demand charges, and Internet-like bandwidth allocation rules to distribution system operations by incorporating nodal voltage and transformer constraints into the optimization framework. Simulation based results on IEEE distribution networks showcase the effectiveness of the approach.more » « less
-
null (Ed.)Smart microgrids (SMGs) may face energy rationing due to unavailability of energy resources. Demand response (DR) in SMGs is useful not only in emergencies, since load cuts might be planned with a reduction in consumption but also in normal operation. SMG energy resources include storage systems, dispatchable units, and resources with uncertainty, such as residential demand, renewable generation, electric vehicle traffic, and electricity markets. An aggregator can optimize the scheduling of these resources, however, load demand can completely curtail until being neglected to increase the profits. The DR function (DRF) is developed as a constraint of minimum size to supply the demand and contributes solving of the 0-1 knapsack problem (KP), which involves a combinatorial optimization. The 0-1 KP stores limited energy capacity and is successful in disconnecting loads. Both constraints, the 0-1 KP and DRF, are compared in the ranking index, load reduction percentage, and execution time. Both functions turn out to be very similar according to the performance of these indicators, unlike the ranking index, in which the DRF has better performance. The DRF reduces to 25% the minimum demand to avoid non-optimal situations, such as non-supplying the demand and has potential benefits, such as the elimination of finite combinations and easy implementation.more » « less
-
Distributing quantum entanglements over long distances is essential for the realization of a global scale quantum Internet. Most of the prior work and proposals assume an on-demand distribution of entanglements which may result in significant network resource under-utilization. In this work, we introduce Quantum Overlay Networks (QONs) for efficient entanglement distribution in quantum networks. When the demand to create end-to-end user entanglements is low, QONs can generate and store maximally entangled Bell pairs (EPR pairs) at specific overlay storage nodes of the network. Later, during peak demands, requests can be served by performing entanglement swaps either over a direct path from the network or over a path using the storage nodes. We solve the link entanglement and storage resource allocation problem in such a QON using a centralized optimization framework. We evaluate the performance of our proposed QON architecture over a wide number of network topologies under various settings using extensive simulation experiments. Our results demonstrate that QONs fare well by a factor of 40% with respect to meeting surge and changing demands compared to traditional non-overlay proposals. QONs also show significant improvement in terms of average entanglement request service delay over non-overlay approaches.more » « less
-
Abstract Current plans to decarbonize the electric supply system imply that the generation from wind and solar sources will grow substantially. This growth will increase the uncertainty of system operations due to the inherent variability of these renewable sources, and as a result, more reserve capacity will be required to provide the ramping (flexibility) needed for reliable operations. This paper assumes that all of the increased uncertainty comes from wind farms on the grid, and it shows how distributed storage managed locally by aggregators can provide the ramping needed without introducing a separate market for flexibility. This can be accomplished when the aggregators minimize the expected daily cost of the energy purchased from the grid for their customers by submitting optimal bids into the wholesale market with high and low price thresholds for discharging and charging the storage. This model is illustrated using a stochastic multi-period security constrained optimal power flow together with realistic data for a reduction of the network in the Northeast Power Coordinating Council region of the United States. The results show that the bidding strategy for distributed storage provides ramping to the grid just as effectively as storage managed by a system operator.
-
This work seeks to quantify the benefits of using energy storage toward the reduction of the energy generation cost of a power system. A two-fold optimization framework is provided where the first optimization problem seeks to find the optimal storage schedule that minimizes operational costs. Since the operational cost depends on the storage capacity, a second optimization problem is then formulated with the aim of finding the optimal storage capacity to be deployed. Although, in general, these problems are difficult to solve, we provide a lower bound on the cost savings for a parametrized family of demand profiles. The optimization framework is numerically illustrated using real-world demand data from ISO New England. Numerical results show that energy storage can reduce energy generation costs by at least 2.5 percent.more » « less