Abstract Seafloor pressure sensor data is emerging as a promising approach to resolve vertical displacement of the seafloor in the offshore reaches of subduction zones, particularly in response to slow slip events (SSEs), although such signals are challenging to resolve due to sensor drift and oceanographic signals. Constraining offshore SSE slip distribution is of key importance to understanding earthquake and tsunami hazards posed by subduction zones. We processed seafloor pressure data from January to October 2019 acquired at the Hikurangi subduction zone, offshore New Zealand, to estimate vertical displacement associated with a large SSE that occurred beneath the seafloor array. The experiment included three self‐calibrating sensors designed to remove sensor drift, which, together with ocean general circulation models, were essential to the identification and correction of long‐period ocean variability remaining in the data after applying traditional processing techniques. We estimate that long‐period oceanographic signals that were not synchronous between pressure sensors and reference sites influenced our inferred displacements by 0.3–2.6 cm, suggesting that regionally deployed reference sites alone may not provide sufficient ocean noise correction. After incorporating long‐period ocean variability corrections into the processing, we calculate 1.0–3.3 cm of uplift during the SSE offshore Gisborne at northern Hikurangi, and 1.1–2.7 cm of uplift offshore the Hawke's Bay area at central Hikurangi. Some Hawke Bay displacements detected by pressure sensors near the trench were delayed by 6 weeks compared to the timing of slip onset detected by onshore Global Navigation Satellite System sites, suggesting updip migration of the SSE.
more »
« less
Slow Slip Detectability in Seafloor Pressure Records Offshore Alaska
Abstract In subduction zones worldwide, seafloor pressure data are used to observe tectonic deformation, particularly from megathrust earthquakes and slow slip events (SSEs). However, such measurements are also sensitive to oceanographic circulation‐generated pressures over a range of frequencies that conflate with tectonic signals of interest. Using seafloor pressure and temperature data from the Alaska Amphibious Community Seismic Experiment, and sea surface height data from satellite altimetry, we evaluate the efficacy of various seasonal and oceanographic pressure signal proxy corrections and conduct synthetic tests to determine their impact on the timing and amplitude prediction of ramp‐like signals typical of SSEs. We find that subtracting out the first mode of the complex empirical orthogonal functions of the pressure records on either the shelf or slope yields signal root‐mean‐square error (RMS) reductions up to 73% or 80%, respectively. Additional correction with proxies that exploit the depth‐dependent spatial coherence of pressure records provides cumulative variance reductions up to 83% and 93%, respectively. Our detectability tests show that the timing and amplitude of synthetic SSE‐like ramps can be well constrained for ramp amplitudes ≥4 cm on the shelf and ≥2 cm on the slope, using a fully automated detector. The principal limits on detectability are residual abrupt changes in pressure that occur as part of the transition to and from summer to winter conditions but are not adequately characterized by our seasonal corrections, as well as the inability to properly account for instrumental drift, which is not readily separated from the seasonal signal.
more »
« less
- Award ID(s):
- 1951071
- PAR ID:
- 10397937
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 128
- Issue:
- 2
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Ediacaran Gametrail Formation of northwestern Canada chronicles the evolution of a complex carbonate ramp system in response to fluctuations in relative sea level and regional tectonic subsidence alongside exceptional global change associated with the Shuram carbon isotope excursion (CIE). Here, we use extensive outcrop exposures of the Gametrail Formation in the Wernecke Mountains of Yukon, Canada, to construct a shelf-slope transect across the Shuram CIE. Twelve stratigraphic sections of the Gametrail Formation are combined with geological mapping and a suite of geochemical analyses to develop an integrated litho-, chemo-, and sequence stratigraphic model for these strata. In the more proximal Corn/Goz Creek region, the Gametrail Formation represents a storm-dominated inner to outer ramp depositional setting, while slope depositional environments in the Nadaleen River region are dominated by hemipelagic sedimentation, turbidites, and debris flows. The magnitude of the Shuram CIE is largest in slope limestones which underwent sediment-buffered diagenesis, while the CIE is notably smaller in the inner-outer ramp dolostones which experienced fluid-buffered diagenesis. Our regional mapping identified a distinct structural panel within the shelf-slope transect that was transported ~30 km via strike-slip motion during the Mesozoic–Cenozoic Cordilleran orogeny. One location in this transported structural block contains a stromatolite reef complex with extremely negative carbon isotope values down to ~ -30‰, while the other location contains an overthickened ooid shoal complex that does not preserve the characteristic negative CIE associated with the Shuram event. These deviations from the usual expression of the Shuram CIE along the shelf-slope transect in the Wernecke Mountains, and elsewhere globally, provide useful examples for how local tectonic, stratigraphic, and/or geochemical complexities can result in unusually large or completely absent expressions of a globally recognized CIE.more » « less
-
Oceanic internal gravity waves propagate along density stratification within the water column and are ubiquitous. They can propagate thousands of kilometers before breaking in shoaling bathymetry and the ensuing turbulent mixing affects coastal processes and climate feedbacks. Despite their importance, internal waves are intrinsically difficult to detect as they result in only minor amplitude deflection of the sea surface; the need for global detection and long time series of internal waves motivates a search for geophysical detection methods. The pressure coupling of a propagating internal wave with the sloping seafloor provides a potential mechanism to generate seismically observable signals. We use data from the South China Sea where exceptional oceanographic and satellite time series are available for comparison to identify internal wave signals in an onshore passive seismic data set for the first time. We analyze potential seismic signals on broadband seismometers in the context of corroborating oceanographic and satellite data available near Dongsha Atoll in May–June 2019 and find a promising correlation between transient seismic tilt signals and internal wave arrivals and collisions in oceanic and satellite data. It appears that we have successfully detected oceanic internal waves using a subaerial seismometer. This initial detection suggests that the onshore seismic detection and amplitude determination of oceanic internal waves is possible and can potentially be used to expand the historical record by capitalizing on existing island and coastal seismic stations.more » « less
-
Glacial isostatic adjustment (GIA) imparts geographic variability in the amplitude and timing of local sea-level (LSL) change arising from glacial-interglacial oscillations relative to a global mean signal (eustasy). We modeled how GIA manifests in the stratigraphic record across four shelf-perpendicular transects moving progressively more distal to the Quaternary North American ice complex, subject to varying amounts of GIA during glacial-interglacial cycles. Along each transect, we obtained LSL histories for nine sites between 1 m and 250 m water depth from the output of a gravitationally self-consistent GIA model run from marine oxygen isotope stage (MIS) 11 to the present. We paired each site’s unique LSL history with 50 identical annual sedimentation models to create a library of 400-k.y.-duration synthetic stratigraphic columns (each assuming no tectonics). Comparison of the suite of synthetic stratigraphic columns between transects for a given bathymetric depth reveals latitudinal differences in the stratigraphically determined number, magnitude, and age of glacial-interglacial cycles, as inferred from stratigraphic sequence count, apparent water-depth change, and age of preserved deglacial transgression. We conclude that, for many field locales, extraction of primary information about the number, scale, and duration of pre-Cenozoic glacial-interglacial cycles from continental shelf stratigraphic records near ice sheets demands a deconvolution of the GIA signal.more » « less
-
The Pioneer MAB Southern Surface Mooring is located on the Continental Shelf, approximately 100 meters deep. The MAB continental shelf north of Cape Hatteras is characterized by a persistent equator-ward current originating from the north, a shelfbreak front separating shelf and slope waters, distributed buoyancy inputs from rivers, variable wind forcing, and intermittent offshore forcing by Gulf Stream meanders. The Pioneer MAB Array is designed to resolve transport processes and ecosystem dynamics in the vicinity of the shelfbreak front, which is a region of complex oceanographic dynamics, intermittent mesoscale variability, and enhanced biological productivity.\nLike other coastal moorings, the Pioneer MAB Southern Surface Mooring is specifically designed to examine coastal-scale phenomena and withstand the challenging conditions of shallow coastal environments. The Surface Mooring contains instruments attached to a Surface Buoy floating on the sea surface, Near Surface Instrument Frame 7 meters below the surface, and a Seafloor Multi-Function Node (MFN) located on the seafloor. The Surface Buoy provides a platform on which to secure surface instruments above the sea surface, below the sea surface, and across the interface between. Additionally, the Surface Buoy contains antennas to transmit data to shore via satellite.more » « less
An official website of the United States government
