Abstract AbyssalT‐waves are seismo‐acoustic waves originating from abyssal oceans. Unlike subduction‐zone‐generated slopeT‐waves which are generated through multiple reflections between the sea surface and the gently dipping seafloor, the genesis of abyssalT‐waves cannot be explained by the same theory. Several hypotheses, including seafloor scattering, sea surface scattering, and internal‐wave‐induced volumetric scattering, have been proposed to elucidate their genesis and propagation. The elusive mechanism of abyssalT‐waves, particularly at low‐frequencies, hinders their use to quantify ocean temperatures through seismic ocean thermometry (SOT) and estimate oceanic earthquake parameters. Here, using realistic geophysical and oceanographic data, we first conduct numerical simulations to compare synthetic low‐frequency abyssalT‐waves under different hypotheses. Our simulations for the Romanche and Blanco transform faults suggest seafloor scattering as the dominant mechanism, with sea surface and internal waves contributing marginally. Short‐scale bathymetry can significantly enhance abyssalT‐waves across a broad frequency range. Also, observedT‐waves from repeating earthquakes in the Romanche, Chain, and Blanco transform faults exhibit remarkably high repeatability. Given the dynamic nature of sea surface roughness and internal waves, the highly repeatableT‐wave arrivals further support the seafloor scattering as the primary mechanism. The dominance of seafloor scattering makes abyssalT‐waves useable for constraining ocean temperature changes, thereby greatly expanding the data spectrum of SOT. Our observations of repeating abyssalT‐waves in the Romanche and Chain transform faults could provide a valuable data set for understanding Equatorial Atlantic warming. Still, further investigations incorporating high‐resolution bathymetry are warranted to better model abyssalT‐waves for earthquake parameter estimation.
more »
« less
Seismic Detection of Oceanic Internal Gravity Waves from Terrestrial Observations
Oceanic internal gravity waves propagate along density stratification within the water column and are ubiquitous. They can propagate thousands of kilometers before breaking in shoaling bathymetry and the ensuing turbulent mixing affects coastal processes and climate feedbacks. Despite their importance, internal waves are intrinsically difficult to detect as they result in only minor amplitude deflection of the sea surface; the need for global detection and long time series of internal waves motivates a search for geophysical detection methods. The pressure coupling of a propagating internal wave with the sloping seafloor provides a potential mechanism to generate seismically observable signals. We use data from the South China Sea where exceptional oceanographic and satellite time series are available for comparison to identify internal wave signals in an onshore passive seismic data set for the first time. We analyze potential seismic signals on broadband seismometers in the context of corroborating oceanographic and satellite data available near Dongsha Atoll in May–June 2019 and find a promising correlation between transient seismic tilt signals and internal wave arrivals and collisions in oceanic and satellite data. It appears that we have successfully detected oceanic internal waves using a subaerial seismometer. This initial detection suggests that the onshore seismic detection and amplitude determination of oceanic internal waves is possible and can potentially be used to expand the historical record by capitalizing on existing island and coastal seismic stations.
more »
« less
- Award ID(s):
- 1753317
- PAR ID:
- 10318390
- Date Published:
- Journal Name:
- AGU advances
- Volume:
- 2
- ISSN:
- 2576-604X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude variability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate landward from the ice front at close to shallow-water gravity-wave speeds (~70 m s −1 ). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ~3 km s −1 . Flexural-gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity-wave excitation.more » « less
-
ABSTRACT. Ice shelves play an important role in buttressing land ice from reaching the sea, thus restrain- ing the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude vari- ability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate land- ward from the ice front at close to shallow-water gravity-wave speeds (∼70 m s−1). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ∼3 km s−1. Flexural- gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity- wave excitation.more » « less
-
Abstract Large-amplitude internal solitary wave (ISW) shoaling, breaking, and run-up was tracked continuously by a dense and rapidly sampling array spanning depths from 500 m to shore near Dongsha Atoll in the South China Sea. Incident ISW amplitudes ranged between 78 and 146 m with propagation speeds between 1.40 and 2.38 m s−1. The ratio between wave amplitude and a critical amplitudeA0controlled breaking type and was related to wave speedcpand depth. Fissioning ISWs generated larger trailing elevation waves when the thermocline was deep and evolved into onshore propagating bores in depths near 100 m. Collapsing ISWs contained significant mixing and little upslope bore propagation. Bores contained significant onshore near-bottom kinetic and potential energy flux and significant offshore rundown and relaxation phases before and after the bore front passage, respectively. Bores on the shallow forereef drove bottom temperature variation in excess of 10°C and near-bottom cross-shore currents in excess of 0.4 m s−1. Bores decelerated upslope, consistent with upslope two-layer gravity current theory, though run-up extentXrwas offshore of the predicted gravity current location. Background stratification affected the bore run-up, withXrfarther offshore when the Korteweg–de Vries nonlinearity coefficientαwas negative. Fronts associated with the shoaling local internal tide, but equal in magnitude to the soliton-generated bores, were observed onshore of 20-m depth.more » « less
-
Abstract Coastal physical processes are essential for the cross‐shore transport of meroplanktonic larvae to their benthic adult habitats. To investigate these processes, we released a swarm of novel, trackable, subsurface vehicles, the Mini‐Autonomous Underwater Explorers (M‐AUEs), which we programmed to mimic larval depth‐keeping behavior. The M‐AUE swarm measured a sudden net onshore transport of 30–70 m over 15–20 min, which we investigated in detail. Here, we describe a novel transport mechanism of depth‐keeping plankton revealed by these observations. In situ measurements and models showed that, as a weakly nonlinear internal wave propagated through the swarm, it deformed surface‐intensified, along‐isopycnal background velocities downward, accelerating depth‐keeping organisms onshore. These higher velocities increased both the depth‐keepers' residence time in the wave and total cross‐shore displacement, leading to wave‐induced transports twice those of fully Lagrangian organisms and four times those associated with the unperturbed background currents. Our analyses also show that integrating velocity time series from virtual larvae or mimics moving with the flow yields both larger and more accurate transport estimates than integrating velocity time series obtained at a point (Eulerian). The increased cross‐shore transport of organisms capable of vertical swimming in this wave/background‐current system is mathematically analogous to the increase in onshore transport associated with horizontal swimming in highly nonlinear internal waves. However, the mechanism described here requires much weaker swimming speeds (mm s−1vs. cm s−1) to achieve significant onshore transports, and meroplanktonic larvae only need to orient themselves vertically, not horizontally.more » « less