skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data quality up to the third observing run of advanced LIGO: Gravity Spy glitch classifications
Abstract Understanding the noise in gravitational-wave detectors is central to detecting and interpreting gravitational-wave signals. Glitches are transient, non-Gaussian noise features that can have a range of environmental and instrumental origins. The Gravity Spy project uses a machine-learning algorithm to classify glitches based upon their time–frequency morphology. The resulting set of classified glitches can be used as input to detector-characterisation investigations of how to mitigate glitches, or data-analysis studies of how to ameliorate the impact of glitches. Here we present the results of the Gravity Spy analysis of data up to the end of the third observing run of advanced laser interferometric gravitational-wave observatory (LIGO). We classify 233981 glitches from LIGO Hanford and 379805 glitches from LIGO Livingston into morphological classes. We find that the distribution of glitches differs between the two LIGO sites. This highlights the potential need for studies of data quality to be individually tailored to each gravitational-wave observatory.  more » « less
Award ID(s):
1912648 2207945 2106865
PAR ID:
10397990
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
40
Issue:
6
ISSN:
0264-9381
Page Range / eLocation ID:
Article No. 065004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Gravity Spy project aims to uncover the origins of glitches, transient bursts of noise that hamper analysis of gravitational-wave data. By using both the work of citizen-science volunteers and machine learning algorithms, the Gravity Spy project enables reliable classification of glitches. Citizen science and machine learning are intrinsically coupled within the Gravity Spy framework, with machine learning classifications providing a rapid first-pass classification of the dataset and enabling tiered volunteer training, and volunteer-based classifications verifying the machine classifications, bolstering the machine learning training set and identifying new morphological classes of glitches. These classifications are now routinely used in studies characterizing the performance of the LIGO gravitational-wave detectors. Providing the volunteers with a training framework that teaches them to classify a wide range of glitches, as well as additional tools to aid their investigations of interesting glitches, empowers them to make discoveries of new classes of glitches. This demonstrates that, when giving suitable support, volunteers can go beyond simple classification tasks to identify new features in data at a level comparable to domain experts. The Gravity Spy project is now providing volunteers with more complicated data that includes auxiliary monitors of the detector to identify the root cause of glitches. 
    more » « less
  2. The first successful detection of gravitational waves by ground-based observatories, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), marked a breakthrough in our comprehension of the Universe. However, due to the unprecedented sensitivity required to make such observations, gravitational-wave detectors also capture disruptive noise sources called glitches, which can potentially be confused for or mask gravitational-wave signals. To address this problem, a community-science project, Gravity Spy, incorporates human insight and machine learning to classify glitches in LIGO data. The machine-learning classifier, integrated into the project since 2017, has evolved over time to accommodate increasing numbers of glitch classes. Despite its success, limitations have arisen in the ongoing LIGO fourth observing run (O4) due to the architecture's simplicity, which led to poor generalization and inability to handle multi-time window inputs effectively. We propose an advanced classifier for O4 glitches. Using data from previous observing runs, we evaluate different fusion strategies for multi-time window inputs, using label smoothing to counter noisy labels, and enhancing interpretability through attention module-generated weights. Our new O4 classifier shows improved performance, and will enhance glitch classification, aiding in the ongoing exploration of gravitational-wave phenomena. 
    more » « less
  3. The first successful detection of gravitational waves by ground-based observatories, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), marked a revolutionary breakthrough in our comprehension of the Universe. However, due to the unprecedented sensitivity required to make such observations, gravitational-wave detectors also capture disruptive noise sources called glitches, potentially masking or appearing as gravitational wave signals themselves. To address this problem, a community-science project, Gravity Spy, incorporates human insight and machine learning to classify glitches in LIGO data. The machine learning classifier, integrated into the project since 2017, has evolved over time to accommodate increasing numbers of glitch classes. Despite its success, limitations have arisen in the ongoing LIGO fourth observing run (O4) due to its architecture’s simplicity, which led to poor generalization and inability to handle multi-time window inputs effectively. We propose an advanced classifier for O4 glitches. Our contributions include evaluating fusion strategies for multi-time window inputs, using label smoothing to counter noisy labels, and enhancing interpretability through attention module-generated weights. This development seeks to enhance glitch classification, aiding in the ongoing exploration of gravitational-wave phenomena. 
    more » « less
  4. {"Abstract":["This data set contains all classifications that the Gravity Spy Machine Learning model for LIGO glitches from the first three observing runs (O1, O2 and O3, where O3 is split into O3a and O3b). Gravity Spy classified all noise events identified by the Omicron trigger pipeline in which Omicron identified that the signal-to-noise ratio was above 7.5 and the peak frequency of the noise event was between 10 Hz and 2048 Hz. To classify noise events, Gravity Spy made Omega scans of every glitch consisting of 4 different durations, which helps capture the morphology of noise events that are both short and long in duration.<\/p>\n\nThere are 22 classes used for O1 and O2 data (including No_Glitch and None_of_the_Above), while there are two additional classes used to classify O3 data.<\/p>\n\nFor O1 and O2, the glitch classes were: 1080Lines, 1400Ripples, Air_Compressor, Blip, Chirp, Extremely_Loud, Helix, Koi_Fish, Light_Modulation, Low_Frequency_Burst, Low_Frequency_Lines, No_Glitch, None_of_the_Above, Paired_Doves, Power_Line, Repeating_Blips, Scattered_Light, Scratchy, Tomte, Violin_Mode, Wandering_Line, Whistle<\/p>\n\nFor O3, the glitch classes were: 1080Lines, 1400Ripples, Air_Compressor, Blip, Blip_Low_Frequency<\/strong>, Chirp, Extremely_Loud, Fast_Scattering<\/strong>, Helix, Koi_Fish, Light_Modulation, Low_Frequency_Burst, Low_Frequency_Lines, No_Glitch, None_of_the_Above, Paired_Doves, Power_Line, Repeating_Blips, Scattered_Light, Scratchy, Tomte, Violin_Mode, Wandering_Line, Whistle<\/p>\n\nIf you would like to download the Omega scans associated with each glitch, then you can use the gravitational-wave data-analysis tool GWpy. If you would like to use this tool, please install anaconda if you have not already and create a virtual environment using the following command<\/p>\n\n```conda create --name gravityspy-py38 -c conda-forge python=3.8 gwpy pandas psycopg2 sqlalchemy```<\/p>\n\nAfter downloading one of the CSV files for a specific era and interferometer, please run the following Python script if you would like to download the data associated with the metadata in the CSV file. We recommend not trying to download too many images at one time. For example, the script below will read data on Hanford glitches from O2 that were classified by Gravity Spy and filter for only glitches that were labelled as Blips with 90% confidence or higher, and then download the first 4 rows of the filtered table.<\/p>\n\n```<\/p>\n\nfrom gwpy.table import GravitySpyTable<\/p>\n\nH1_O2 = GravitySpyTable.read('H1_O2.csv')<\/p>\n\nH1_O2[(H1_O2["ml_label"] == "Blip") & (H1_O2["ml_confidence"] > 0.9)]<\/p>\n\nH1_O2[0:4].download(nproc=1)<\/p>\n\n```<\/p>\n\nEach of the columns in the CSV files are taken from various different inputs: <\/p>\n\n[\u2018event_time\u2019, \u2018ifo\u2019, \u2018peak_time\u2019, \u2018peak_time_ns\u2019, \u2018start_time\u2019, \u2018start_time_ns\u2019, \u2018duration\u2019, \u2018peak_frequency\u2019, \u2018central_freq\u2019, \u2018bandwidth\u2019, \u2018channel\u2019, \u2018amplitude\u2019, \u2018snr\u2019, \u2018q_value\u2019] contain metadata about the signal from the Omicron pipeline. <\/p>\n\n[\u2018gravityspy_id\u2019] is the unique identifier for each glitch in the dataset. <\/p>\n\n[\u20181400Ripples\u2019, \u20181080Lines\u2019, \u2018Air_Compressor\u2019, \u2018Blip\u2019, \u2018Chirp\u2019, \u2018Extremely_Loud\u2019, \u2018Helix\u2019, \u2018Koi_Fish\u2019, \u2018Light_Modulation\u2019, \u2018Low_Frequency_Burst\u2019, \u2018Low_Frequency_Lines\u2019, \u2018No_Glitch\u2019, \u2018None_of_the_Above\u2019, \u2018Paired_Doves\u2019, \u2018Power_Line\u2019, \u2018Repeating_Blips\u2019, \u2018Scattered_Light\u2019, \u2018Scratchy\u2019, \u2018Tomte\u2019, \u2018Violin_Mode\u2019, \u2018Wandering_Line\u2019, \u2018Whistle\u2019] contain the machine learning confidence for a glitch being in a particular Gravity Spy class (the confidence in all these columns should sum to unity). <\/p>\n\n[\u2018ml_label\u2019, \u2018ml_confidence\u2019] provide the machine-learning predicted label for each glitch, and the machine learning confidence in its classification. <\/p>\n\n[\u2018url1\u2019, \u2018url2\u2019, \u2018url3\u2019, \u2018url4\u2019] are the links to the publicly-available Omega scans for each glitch. \u2018url1\u2019 shows the glitch for a duration of 0.5 seconds, \u2018url2\u2019 for 1 seconds, \u2018url3\u2019 for 2 seconds, and \u2018url4\u2019 for 4 seconds.<\/p>\n\n```<\/p>\n\nFor the most recently uploaded training set used in Gravity Spy machine learning algorithms, please see Gravity Spy Training Set on Zenodo.<\/p>\n\nFor detailed information on the training set used for the original Gravity Spy machine learning paper, please see Machine learning for Gravity Spy: Glitch classification and dataset on Zenodo. <\/p>"]} 
    more » « less
  5. Gravity Spy is a citizen science project that draws on the contributions of both humans and machines to achieve its scientific goals. The system supports the Laser Interferometer Gravitational Observatory (LIGO) by classifying “glitches” that interfere with observations. The system makes three advances on the current state of the art: explicit training for new volunteers, synergy between machine and human classification and support for discovery of new classes of glitch. As well, it provides a platform for human-centred computing research on motivation, learning and collaboration. The system has been launched and is currently in operation. 
    more » « less