skip to main content


Title: Data quality up to the third observing run of advanced LIGO: Gravity Spy glitch classifications
Abstract

Understanding the noise in gravitational-wave detectors is central to detecting and interpreting gravitational-wave signals. Glitches are transient, non-Gaussian noise features that can have a range of environmental and instrumental origins. The Gravity Spy project uses a machine-learning algorithm to classify glitches based upon their time–frequency morphology. The resulting set of classified glitches can be used as input to detector-characterisation investigations of how to mitigate glitches, or data-analysis studies of how to ameliorate the impact of glitches. Here we present the results of the Gravity Spy analysis of data up to the end of the third observing run of advanced laser interferometric gravitational-wave observatory (LIGO). We classify 233981 glitches from LIGO Hanford and 379805 glitches from LIGO Livingston into morphological classes. We find that the distribution of glitches differs between the two LIGO sites. This highlights the potential need for studies of data quality to be individually tailored to each gravitational-wave observatory.

 
more » « less
Award ID(s):
1912648 2207945 2106865
PAR ID:
10397990
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
40
Issue:
6
ISSN:
0264-9381
Page Range / eLocation ID:
Article No. 065004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Gravity Spy project aims to uncover the origins of glitches, transient bursts of noise that hamper analysis of gravitational-wave data. By using both the work of citizen-science volunteers and machine learning algorithms, the Gravity Spy project enables reliable classification of glitches. Citizen science and machine learning are intrinsically coupled within the Gravity Spy framework, with machine learning classifications providing a rapid first-pass classification of the dataset and enabling tiered volunteer training, and volunteer-based classifications verifying the machine classifications, bolstering the machine learning training set and identifying new morphological classes of glitches. These classifications are now routinely used in studies characterizing the performance of the LIGO gravitational-wave detectors. Providing the volunteers with a training framework that teaches them to classify a wide range of glitches, as well as additional tools to aid their investigations of interesting glitches, empowers them to make discoveries of new classes of glitches. This demonstrates that, when giving suitable support, volunteers can go beyond simple classification tasks to identify new features in data at a level comparable to domain experts. The Gravity Spy project is now providing volunteers with more complicated data that includes auxiliary monitors of the detector to identify the root cause of glitches.

     
    more » « less
  2. The first successful detection of gravitational waves by ground-based observatories, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), marked a revolutionary breakthrough in our comprehension of the Universe. However, due to the unprecedented sensitivity required to make such observations, gravitational-wave detectors also capture disruptive noise sources called glitches, potentially masking or appearing as gravitational wave signals themselves. To address this problem, a community-science project, Gravity Spy, incorporates human insight and machine learning to classify glitches in LIGO data. The machine learning classifier, integrated into the project since 2017, has evolved over time to accommodate increasing numbers of glitch classes. Despite its success, limitations have arisen in the ongoing LIGO fourth observing run (O4) due to its architecture’s simplicity, which led to poor generalization and inability to handle multi-time window inputs effectively. We propose an advanced classifier for O4 glitches. Our contributions include evaluating fusion strategies for multi-time window inputs, using label smoothing to counter noisy labels, and enhancing interpretability through attention module-generated weights. This development seeks to enhance glitch classification, aiding in the ongoing exploration of gravitational-wave phenomena. 
    more » « less
  3. Abstract

    We present a computational method to identify glitches in gravitational-wave data that occur nearby gravitational-wave signals from compact binary coalescences. The Q-transform, an established tool in LIGO-Virgo-KAGRA data analysis, computes the probability of any excess in the data surrounding a signal against the assumption of a Gaussian noise background, flagging any significant glitches. Subsequently, we perform validation tests on this computational method to ensure self-consistency in colored Gaussian noise, as well as data that contains a gravitational-wave event after subtracting the signal using the best-fit template. Finally, a comparison of our glitch identification results from real events in LIGO-Virgo’s third observing run against the list of events which required glitch mitigation shows that this tool will be useful in providing precise information about data quality to improve astrophysical analyses of these events.

     
    more » « less
  4. Abstract

    Data recorded by gravitational wave detectors includes many non-astrophysical transient noise bursts, the most common of which is caused by scattered-light within the detectors. These so-called ‘glitches’ in the data impact the ability to both observe and characterize incoming gravitational wave signals. In this work we use a scattered-light glitch waveform model to identify and characterize scattered-light glitches in a representative stretch of gravitational wave data. We identify 2749 scattered-light glitches in 5.96 days of LIGO-Hanford data and 1306 glitches in 5.93 days of LIGO-Livingston data taken from the third LIGO-Virgo observing run. By subtracting identified scattered-light glitches we demonstrate an increase in the sensitive volume of a gravitational wave search for binary black hole signals by1%.

     
    more » « less
  5. This data set contains all classifications that the Gravity Spy Machine Learning model for LIGO glitches from the first three observing runs (O1, O2 and O3, where O3 is split into O3a and O3b). Gravity Spy classified all noise events identified by the Omicron trigger pipeline in which Omicron identified that the signal-to-noise ratio was above 7.5 and the peak frequency of the noise event was between 10 Hz and 2048 Hz. To classify noise events, Gravity Spy made Omega scans of every glitch consisting of 4 different durations, which helps capture the morphology of noise events that are both short and long in duration.

    There are 22 classes used for O1 and O2 data (including No_Glitch and None_of_the_Above), while there are two additional classes used to classify O3 data.

    For O1 and O2, the glitch classes were: 1080Lines, 1400Ripples, Air_Compressor, Blip, Chirp, Extremely_Loud, Helix, Koi_Fish, Light_Modulation, Low_Frequency_Burst, Low_Frequency_Lines, No_Glitch, None_of_the_Above, Paired_Doves, Power_Line, Repeating_Blips, Scattered_Light, Scratchy, Tomte, Violin_Mode, Wandering_Line, Whistle

    For O3, the glitch classes were: 1080Lines, 1400Ripples, Air_Compressor, Blip, Blip_Low_Frequency, Chirp, Extremely_Loud, Fast_Scattering, Helix, Koi_Fish, Light_Modulation, Low_Frequency_Burst, Low_Frequency_Lines, No_Glitch, None_of_the_Above, Paired_Doves, Power_Line, Repeating_Blips, Scattered_Light, Scratchy, Tomte, Violin_Mode, Wandering_Line, Whistle

    If you would like to download the Omega scans associated with each glitch, then you can use the gravitational-wave data-analysis tool GWpy. If you would like to use this tool, please install anaconda if you have not already and create a virtual environment using the following command

    ```conda create --name gravityspy-py38 -c conda-forge python=3.8 gwpy pandas psycopg2 sqlalchemy```

    After downloading one of the CSV files for a specific era and interferometer, please run the following Python script if you would like to download the data associated with the metadata in the CSV file. We recommend not trying to download too many images at one time. For example, the script below will read data on Hanford glitches from O2 that were classified by Gravity Spy and filter for only glitches that were labelled as Blips with 90% confidence or higher, and then download the first 4 rows of the filtered table.

    ```

    from gwpy.table import GravitySpyTable

    H1_O2 = GravitySpyTable.read('H1_O2.csv')

    H1_O2[(H1_O2["ml_label"] == "Blip") & (H1_O2["ml_confidence"] > 0.9)]

    H1_O2[0:4].download(nproc=1)

    ```

    Each of the columns in the CSV files are taken from various different inputs: 

    [‘event_time’, ‘ifo’, ‘peak_time’, ‘peak_time_ns’, ‘start_time’, ‘start_time_ns’, ‘duration’, ‘peak_frequency’, ‘central_freq’, ‘bandwidth’, ‘channel’, ‘amplitude’, ‘snr’, ‘q_value’] contain metadata about the signal from the Omicron pipeline. 

    [‘gravityspy_id’] is the unique identifier for each glitch in the dataset. 

    [‘1400Ripples’, ‘1080Lines’, ‘Air_Compressor’, ‘Blip’, ‘Chirp’, ‘Extremely_Loud’, ‘Helix’, ‘Koi_Fish’, ‘Light_Modulation’, ‘Low_Frequency_Burst’, ‘Low_Frequency_Lines’, ‘No_Glitch’, ‘None_of_the_Above’, ‘Paired_Doves’, ‘Power_Line’, ‘Repeating_Blips’, ‘Scattered_Light’, ‘Scratchy’, ‘Tomte’, ‘Violin_Mode’, ‘Wandering_Line’, ‘Whistle’] contain the machine learning confidence for a glitch being in a particular Gravity Spy class (the confidence in all these columns should sum to unity). 

    [‘ml_label’, ‘ml_confidence’] provide the machine-learning predicted label for each glitch, and the machine learning confidence in its classification. 

    [‘url1’, ‘url2’, ‘url3’, ‘url4’] are the links to the publicly-available Omega scans for each glitch. ‘url1’ shows the glitch for a duration of 0.5 seconds, ‘url2’ for 1 seconds, ‘url3’ for 2 seconds, and ‘url4’ for 4 seconds.

    ```

    For the most recently uploaded training set used in Gravity Spy machine learning algorithms, please see Gravity Spy Training Set on Zenodo.

    For detailed information on the training set used for the original Gravity Spy machine learning paper, please see Machine learning for Gravity Spy: Glitch classification and dataset on Zenodo. 

     
    more » « less