{"Abstract":["This dataset contains machine learning and volunteer classifications from the Gravity Spy project. It includes glitches from observing runs O1, O2, O3a and O3b that received at least one classification from a registered volunteer in the project. It also indicates glitches that are nominally retired from the project using our default set of retirement parameters, which are described below. See more details in the Gravity Spy Methods paper. <\/p>\n\nWhen a particular subject in a citizen science project (in this case, glitches from the LIGO datastream) is deemed to be classified sufficiently it is "retired" from the project. For the Gravity Spy project, retirement depends on a combination of both volunteer and machine learning classifications, and a number of parameterizations affect how quickly glitches get retired. For this dataset, we use a default set of retirement parameters, the most important of which are: <\/p>\n\nA glitches must be classified by at least 2 registered volunteers<\/li>Based on both the initial machine learning classification and volunteer classifications, the glitch has more than a 90% probability of residing in a particular class<\/li>Each volunteer classification (weighted by that volunteer's confusion matrix) contains a weight equal to the initial machine learning score when determining the final probability<\/li><\/ol>\n\nThe choice of these and other parameterization will affect the accuracy of the retired dataset as well as the number of glitches that are retired, and will be explored in detail in an upcoming publication (Zevin et al. in prep). <\/p>\n\nThe dataset can be read in using e.g. Pandas: \n```\nimport pandas as pd\ndataset = pd.read_hdf('retired_fulldata_min2_max50_ret0p9.hdf5', key='image_db')\n```\nEach row in the dataframe contains information about a particular glitch in the Gravity Spy dataset. <\/p>\n\nDescription of series in dataframe<\/strong><\/p>\n\n['1080Lines', '1400Ripples', 'Air_Compressor', 'Blip', 'Chirp', 'Extremely_Loud', 'Helix', 'Koi_Fish', 'Light_Modulation', 'Low_Frequency_Burst', 'Low_Frequency_Lines', 'No_Glitch', 'None_of_the_Above', 'Paired_Doves', 'Power_Line', 'Repeating_Blips', 'Scattered_Light', 'Scratchy', 'Tomte', 'Violin_Mode', 'Wandering_Line', 'Whistle']\n\tMachine learning scores for each glitch class in the trained model, which for a particular glitch will sum to unity<\/li><\/ul>\n\t<\/li>['ml_confidence', 'ml_label']\n\tHighest machine learning confidence score across all classes for a particular glitch, and the class associated with this score<\/li><\/ul>\n\t<\/li>['gravityspy_id', 'id']\n\tUnique identified for each glitch on the Zooniverse platform ('gravityspy_id') and in the Gravity Spy project ('id'), which can be used to link a particular glitch to the full Gravity Spy dataset (which contains GPS times among many other descriptors)<\/li><\/ul>\n\t<\/li>['retired']\n\tMarks whether the glitch is retired using our default set of retirement parameters (1=retired, 0=not retired)<\/li><\/ul>\n\t<\/li>['Nclassifications']\n\tThe total number of classifications performed by registered volunteers on this glitch<\/li><\/ul>\n\t<\/li>['final_score', 'final_label']\n\tThe final score (weighted combination of machine learning and volunteer classifications) and the most probable type of glitch<\/li><\/ul>\n\t<\/li>['tracks']\n\tArray of classification weights that were added to each glitch category due to each volunteer's classification<\/li><\/ul>\n\t<\/li><\/ul>\n\n <\/p>\n\n```\nFor machine learning classifications on all glitches in O1, O2, O3a, and O3b, please see Gravity Spy Machine Learning Classifications on Zenodo<\/p>\n\nFor the most recently uploaded training set used in Gravity Spy machine learning algorithms, please see Gravity Spy Training Set on Zenodo.<\/p>\n\nFor detailed information on the training set used for the original Gravity Spy machine learning paper, please see Machine learning for Gravity Spy: Glitch classification and dataset on Zenodo. <\/p>"]}
more »
« less
Gravity Spy: lessons learned and a path forward
Abstract The Gravity Spy project aims to uncover the origins of glitches, transient bursts of noise that hamper analysis of gravitational-wave data. By using both the work of citizen-science volunteers and machine learning algorithms, the Gravity Spy project enables reliable classification of glitches. Citizen science and machine learning are intrinsically coupled within the Gravity Spy framework, with machine learning classifications providing a rapid first-pass classification of the dataset and enabling tiered volunteer training, and volunteer-based classifications verifying the machine classifications, bolstering the machine learning training set and identifying new morphological classes of glitches. These classifications are now routinely used in studies characterizing the performance of the LIGO gravitational-wave detectors. Providing the volunteers with a training framework that teaches them to classify a wide range of glitches, as well as additional tools to aid their investigations of interesting glitches, empowers them to make discoveries of new classes of glitches. This demonstrates that, when giving suitable support, volunteers can go beyond simple classification tasks to identify new features in data at a level comparable to domain experts. The Gravity Spy project is now providing volunteers with more complicated data that includes auxiliary monitors of the detector to identify the root cause of glitches.
more »
« less
- PAR ID:
- 10488529
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- The European Physical Journal Plus
- Volume:
- 139
- Issue:
- 1
- ISSN:
- 2190-5444
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Gravity Spy is a citizen science project that draws on the contributions of both humans and machines to achieve its scientific goals. The system supports the Laser Interferometer Gravitational Observatory (LIGO) by classifying “glitches” that interfere with observations. The system makes three advances on the current state of the art: explicit training for new volunteers, synergy between machine and human classification and support for discovery of new classes of glitch. As well, it provides a platform for human-centred computing research on motivation, learning and collaboration. The system has been launched and is currently in operation.more » « less
-
Abstract Understanding the noise in gravitational-wave detectors is central to detecting and interpreting gravitational-wave signals. Glitches are transient, non-Gaussian noise features that can have a range of environmental and instrumental origins. The Gravity Spy project uses a machine-learning algorithm to classify glitches based upon their time–frequency morphology. The resulting set of classified glitches can be used as input to detector-characterisation investigations of how to mitigate glitches, or data-analysis studies of how to ameliorate the impact of glitches. Here we present the results of the Gravity Spy analysis of data up to the end of the third observing run of advanced laser interferometric gravitational-wave observatory (LIGO). We classify 233981 glitches from LIGO Hanford and 379805 glitches from LIGO Livingston into morphological classes. We find that the distribution of glitches differs between the two LIGO sites. This highlights the potential need for studies of data quality to be individually tailored to each gravitational-wave observatory.more » « less
-
The first successful detection of gravitational waves by ground-based observatories, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), marked a revolutionary breakthrough in our comprehension of the Universe. However, due to the unprecedented sensitivity required to make such observations, gravitational-wave detectors also capture disruptive noise sources called glitches, potentially masking or appearing as gravitational wave signals themselves. To address this problem, a community-science project, Gravity Spy, incorporates human insight and machine learning to classify glitches in LIGO data. The machine learning classifier, integrated into the project since 2017, has evolved over time to accommodate increasing numbers of glitch classes. Despite its success, limitations have arisen in the ongoing LIGO fourth observing run (O4) due to its architecture’s simplicity, which led to poor generalization and inability to handle multi-time window inputs effectively. We propose an advanced classifier for O4 glitches. Our contributions include evaluating fusion strategies for multi-time window inputs, using label smoothing to counter noisy labels, and enhancing interpretability through attention module-generated weights. This development seeks to enhance glitch classification, aiding in the ongoing exploration of gravitational-wave phenomena.more » « less
-
Citizen science projects face a dilemma in relying on contributions from volunteers to achieve their scientific goals: providing volunteers with explicit training might increase the quality of contributions, but at the cost of losing the work done by newcomers during the training period, which for many is the only work they will contribute to the project. Based on research in cognitive science on how humans learn to classify images, we have designed an approach to use machine learning to guide the presentation of tasks to newcomers that help them more quickly learn how to do the image classification task while still contributing to the work of the project. A Bayesian model for tracking volunteer learning is presented.more » « less