skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Architecture of the insect society: comparative analysis of collective construction and social function of nests
Abstract Many social insects construct nests, which are fundamentally important to the success and survival of the colony. We review recent work on understanding the construction and function of social insect nests and attempt to identify general principles of collective construction and nest architecture in insect societies. We look across taxa, including termites, ants, social bees, and social wasps, specifically focusing on experimental studies that have elucidated the mechanisms by which insect nests are successfully built. We find that selecting materials and nest sites are crucial decisions made by social insects that impact both the resulting nest architecture and colony survival. Social insects utilize cohesive, malleable material to build nests. Often, nests are constructed in a modular manner, allowing social insects to exploit a variety of materials while growing to accommodate population explosions from a few individuals to millions. We note that the regulatory principles that coordinate building behaviors are consistent across taxa. Specifically, encounter rate, positive and negative feedback cycles, stigmergy, and genetic influence all govern the actions of multiple builders and result in a cohesive, functional structure. We further consider empirical studies that demonstrate how nests impact collective behaviors and help insect societies flourish. We find that all social insect nests serve the same key functions: to protect residents and to offer a means of organizing their collective behaviors. Ultimately, we expand our analysis to experiments utilizing robot models of societies, which aim to uncover unifying themes of construction and space use by collectives. Overall, we show that social insect nests represent engineering and construction marvels that provide fundamental insights into how biological collectives succeed in the natural environment, and we suggest that the use of robotic models may provide insight into these fascinating behaviors and structures.  more » « less
Award ID(s):
2019799
PAR ID:
10635500
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Insectes Sociaux
ISSN:
0020-1812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Bumble bee queens initiate nests solitarily and transition to living socially once they successfully rear their first cohort of offspring. Bumble bees are disproportionately important for early season pollination, and many populations are experiencing dramatic declines. In this system, the onset of the social stage is critical for nest survival, yet the mechanisms that facilitate this transition remain understudied. Further, the majority of conservation efforts target the social stage of the bumble bee life cycle and do not address the solitary founding stage. We experimentally manipulated the timing of worker emergence in young nests of bumble bee (Bombus impatiens) queens to determine whether and how queen fecundity and survival are impacted by the emergence of workers in the nest. We found that queens with workers added to the nest exhibit increased ovary activation, accelerated egg laying, elevated juvenile hormone (JH) titres and also lower mortality relative to solitary queens. We also show that JH is more strongly impacted by the social environment than associated with queen reproductive state, suggesting that this key regulator of insect reproduction has expanded its function in bumble bees to also influence social organization. We further demonstrate that these effects are independent of queen social history, suggesting that this underlying mechanism promoting queen fecundity is reversible and short lived. Synchronization between queen reproductive status and emergence of workers in the nest may ultimately increase the likelihood of early nesting success in social systems with solitary nest founding. Given that bumble bee workers regulate queen physiology as we have demonstrated, the timing of early worker emergence in the nest likely impacts queen fitness, colony developmental trajectories and ultimately nesting success. Collectively, our findings underline the importance of conservation interventions for bumble bees that support the early nesting period and facilitate the production and maintenance of workers in young nests 
    more » « less
  2. Abstract Social insects are among the most abundant arthropods in terrestrial ecosystems, where they provide ecosystem services. The effect of subterranean activity of ants on soil is well-studied, yet little is known about nest architecture due to the difficulty of observing belowground patterns. Furthermore, many species’ ranges span environmental gradients, and their nest architecture is likely shaped by the climatic and landscape features of their specific habitats. We investigated the effects of two temperature treatments on the shape and size of nests built byFormica podzolicaants collected from high and low elevations in the Colorado Rocky Mountains in a full factorial experiment. Ants nested in experimental chambers with soil surface temperatures matching the local temperatures of sample sites. We observed a plastic response of nest architecture to conditions experienced during excavation; workers experiencing a high temperature excavated deeper nests than those experiencing a cooler temperature. Further, we found evidence of local adaptation to temperature, with a significant interaction effect of natal elevation and temperature treatment on nest size and complexity. Specifically, workers from high elevation sites built larger nests with more tunnels when placed in the cool surface temperature treatment, and workers from low elevation sites exhibited the opposite pattern. Our results suggest that subterranean ant nest architecture is shaped by a combination of plastic and locally adapted building behaviors; we suggest that the flexibility of this ‘extended phenotype’ likely contributes to the widespread success of ants. 
    more » « less
  3. Structures built by animals, such as nests, often can be considered extended phenotypes that facilitate the study of animal behaviour. For rodents, nest building is both an important form of behavioural thermoregulation and a critical component of parental care. Changes in nest structure or the prioritization of nesting behaviour are therefore likely to have consequences for survival and reproduction, and both biotic and abiotic environmental factors are likely to influence the adaptive value of such differences. Here we first develop a novel assay to investigate interspecific variation in the nesting behaviour of deer mice (genus Peromyscus). Using this assay, we find that, while there is some variation in the complexity of the nests built by Peromyscus mice, differences in the latency to begin nest construction are more striking. Four of the seven taxa examined here build nests within an hour of being given nesting material, but this latency to nest is not related to ultimate differences in nest structure, suggesting that the ability to nest is relatively conserved within the genus, but species differ in their prioritization of nesting behaviour. We also find that latency to nest is not correlated with body size, climate or the construction of burrows that create microclimates. However, the four taxa with short nesting latencies all have monogamous mating systems, suggesting that differences in nesting latency may be related to social environment. This detailed characterization of nesting behaviour within the genus provides an important foundation for future studies of the genetic and neurobiological mechanisms that contribute to the evolution of behaviour. 
    more » « less
  4. Form follows function throughout the development of an organism. This principle should apply beyond the organism to the nests they build, but empirical studies are lacking. Honeybees provide a uniquely suited system to study nest form and function throughout development because we can image the three-dimensional structure repeatedly and non-destructively. Here, we tracked nest-wide comb growth in six colonies over 45 days (control colonies) and found that colonies have a stereotypical process of development that maintains a spheroid nest shape. To experimentally test if nest structure is important for colony function, we shuffled the nests of an additional six colonies, weekly rearranging the comb positions and orientations (shuffled colonies). Surprisingly, we found no differences between control and shuffled colonies in multiple colony performance metrics—worker population, comb area, hive weight and nest temperature. However, using predictive modelling to examine how workers allocate comb to expand their nests, we show that shuffled colonies compensate for these disruptions by accounting for the three-dimensional structure to reconnect their nest. This suggests that nest architecture is more flexible than previously thought, and that superorganisms have mechanisms to compensate for drastic architectural perturbations and maintain colony function. 
    more » « less
  5. Abstract Explaining large‐scale ordered patterns and their effects on ecosystem functioning is a fundamental and controversial challenge in ecology. Here, we coupled empirical and theoretical approaches to explore how competition and spatial heterogeneity govern the regularity of colony dispersion in fungus‐farming termites. Individuals from different colonies fought fiercely, and inter‐nest distances were greater when nests were large and resources scarce—as expected if competition is strong, large colonies require more resources and foraging area scales with resource availability. Building these principles into a model of inter‐colony competition showed that highly ordered patterns emerged under high resource availability and low resource heterogeneity. Analysis of this dynamical model provided novel insights into the mechanisms that modulate pattern regularity and the emergent effects of these patterns on system‐wide productivity. Our results show how environmental context shapes pattern formation by social‐insect ecosystem engineers, which offers one explanation for the marked variability observed across ecosystems. 
    more » « less