skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent Progress in the Development of a-Se/CMOS Sensors for X-ray Detection
Amorphous selenium (a-Se) is a glass-former capable of deposition at high rates by thermal evaporation over a large area. It was chosen as a direct conversion material due to its appealing properties for imaging in both low and high X-ray energy ranges (<30 keV and <30 keV, respectively). It has a bandgap of 2.2 eV and can achieve high photodetection efficiency at short wavelengths less than 400 nm which makes it appealing for indirect conversion detectors. The integration of a-Se with readout integrated circuits started with thin-film transistors for digital flat panel X-ray detectors. With increasing applications in life science, biomedical imaging, X-ray imaging, high energy physics, and industrial imaging that require high spatial resolution, the integration of a-Se and CMOS is one direct way to improve the high-contrast visualization and high-frequency response. Over the past decade, significant improvements in a-Se/CMOS technologies have been achieved with improvements to modulation transfer function and detective quantum efficiency. We summarize recent advances in integrating and photon-counting detectors based on a-Se coupled with CMOS readout and discuss some of the shortcomings in the detector structure, such as low charge conversion efficiency at low electric field and high dark current at high electric field. Different pixel architectures and their performance will be highlighted.  more » « less
Award ID(s):
1950907
PAR ID:
10398008
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Quantum Beam Science
Volume:
5
Issue:
4
ISSN:
2412-382X
Page Range / eLocation ID:
29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent progress in the field of micron-scale spatial resolution direct conversion X-ray detectors for high-energy synchrotron light sources serve applications ranging from nondestructive and noninvasive microscopy techniques which provide insight into the structure and morphology of crystals, to medical diagnostic measurement devices. Amorphous selenium ( a -Se) as a wide-bandgap thermally evaporated photoconductor exhibits ultra-low thermal generation rates for dark carriers and has been extensively used in X-ray medical imaging. Being an amorphous material, it can further be deposited over large areas at room temperatures and at substantially lower costs as compared to crystalline semiconductors. To address the demands for a high-energy and high spatial resolution X-ray detector for synchrotron light source applications, we have thermally evaporated a -Se on a Mixed-Mode Pixel Array Detector (MM-PAD) Application Specific Integrated Circuit (ASIC). The ASIC format consists of 128 × 128 square pixels each 150 μm on a side. A 200 μm a -Se layer was directly deposited on the ASIC followed by a metal top electrode. The completed detector assembly was tested with 45 kV Ag and 23 kV Cu X-ray tube sources. The detector fabrication, performances, Modulation Transfer Function (MTF) measurements, and simulations are reported. 
    more » « less
  2. Radović, Iva Bogdanović; Lorenz, Katharina; Wang, Yongqiang; Yasuda, Kazuhiro (Ed.)
    The improvements made to ultra-thin windows for X-ray detectors in recent years have allowed for the detection of elements as light as lithium. However, their use with particle induced X-ray emission (PIXE) spectroscopy typically requires the addition of an absorber thick enough to prevent backscattered ions from reaching the detector. This also prevents lower energy (< 1 keV) X-rays from reaching the detector. By using a magnetic field to deflect backscattered ions away, the absorber can be eliminated, allowing for the detection of ultra-low energy X-rays. At the Ion Beam Laboratory of the University of North Texas, a prototype PIXE system using a magnetic deflector has been developed to allow for the detection and measurement of X-rays from light elements using a silicon drift X-ray detector with an ultra-thin window. With an average magnetic flux density of 0.88 T along the center, backscattered protons of an energy up to 1.22 MeV were successfully deflected away from the X-ray detector. Light element PIXE was performed with a 1 MeV proton beam on manganese oxide, sodium chloride and a Hibiscus rosa-sinensis leaf. Elements of 5 ≤ Z ≤ 30 were successfully detected. 
    more » « less
  3. Abstract We report the first >99% confidence detection of X-ray polarization in BL Lacertae. During a recent X-ray/ γ -ray outburst, a 287 ks observation (2022 November 27–30) was taken using the Imaging X-ray Polarimetry Explorer (IXPE), together with contemporaneous multiwavelength observations from the Neil Gehrels Swift observatory and XMM-Newton in soft X-rays (0.3–10 keV), NuSTAR in hard X-rays (3–70 keV), and optical polarization from the Calar Alto and Perkins Telescope observatories. Our contemporaneous X-ray data suggest that the IXPE energy band is at the crossover between the low- and high-frequency blazar emission humps. The source displays significant variability during the observation, and we measure polarization in three separate time bins. Contemporaneous X-ray spectra allow us to determine the relative contribution from each emission hump. We find >99% confidence X-ray polarization Π 2 – 4 keV = 21.7 − 7.9 + 5.6 % and electric vector polarization angle ψ 2–4keV = −28.°7 ± 8.°7 in the time bin with highest estimated synchrotron flux contribution. We discuss possible implications of our observations, including previous IXPE BL Lacertae pointings, tentatively concluding that synchrotron self-Compton emission dominates over hadronic emission processes during the observed epochs. 
    more » « less
  4. Abstract Demonstrated are antimony‐based (Sb‐based) separate absorption and multiplication avalanche photodiodes (SAM‐APDs) for X‐ray and gamma‐ray detection, which are composed of GaSb absorbers and large bandgap AlAsSb multiplication regions in order to enhance the probability of stopping high‐energy photons while drastically suppressing the minority carrier diffusion. Well‐defined X‐ray and gamma‐ray photopeaks are observed under exposure to241Am radioactive sources, demonstrating the desirable energy‐sensitive detector performance. Spectroscopic characterizations show a significant improvement of measured energy resolution due to reduced high‐peak electric field in the absorbers and suppressed nonradiative recombination on surfaces. Additionally, the GaSb/AlAsSb SAM‐APDs clearly exhibit energy response linearity up to 59.5 keV with a minimum full‐width half‐maximum of 1.283 keV. A further analysis of the spectroscopic measurement suggests that the device performance is intrinsically limited by the noise from the readout electronics rather than that from the photodiodes. This study provides a first understanding of Sb‐based energy‐sensitive SAM‐APDs and paves the way to achieving efficient detection of high‐energy photons for X‐ray and gamma‐ray spectroscopy. 
    more » « less
  5. During the 2022 New Mexico monsoon season, we deployed two X‐ray scintillation detectors, coupled with a 180 MHz data acquisition system to detect X‐rays from natural lightning at the Langmuir Lab mountain‐top facility, located at 3.3 km above mean sea level. Data acquisition was triggered by an electric field antenna calibrated to pick up lightning within a few km of the X‐ray detectors. We report the energies of over 240 individual photons, ranging between 13 keV and 3.8 MeV, as registered by the LaBr3(Ce) scintillation detector. These detections were associated with four lightning flashes. Particularly, four‐stepped leaders and seven dart leaders produced energetic radiation. The reported photon energies allowed us to confirm that the X‐ray energy distribution of natural stepped and dart leaders follows a power‐law distribution with an exponent ranging between 1.09 and 1.96, with stepped leaders having a harder spectrum. Characterization of the associated leaders and return strokes was done with four different electric field sensing antennas, which can measure a wide range of time scales, from the static storm field to the fast change associated with dart leaders. 
    more » « less