skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectral Hardness of X‐ and Gamma‐Ray Emissions From Lightning Stepped and Dart Leaders
During the 2022 New Mexico monsoon season, we deployed two X‐ray scintillation detectors, coupled with a 180 MHz data acquisition system to detect X‐rays from natural lightning at the Langmuir Lab mountain‐top facility, located at 3.3 km above mean sea level. Data acquisition was triggered by an electric field antenna calibrated to pick up lightning within a few km of the X‐ray detectors. We report the energies of over 240 individual photons, ranging between 13 keV and 3.8 MeV, as registered by the LaBr3(Ce) scintillation detector. These detections were associated with four lightning flashes. Particularly, four‐stepped leaders and seven dart leaders produced energetic radiation. The reported photon energies allowed us to confirm that the X‐ray energy distribution of natural stepped and dart leaders follows a power‐law distribution with an exponent ranging between 1.09 and 1.96, with stepped leaders having a harder spectrum. Characterization of the associated leaders and return strokes was done with four different electric field sensing antennas, which can measure a wide range of time scales, from the static storm field to the fast change associated with dart leaders.  more » « less
Award ID(s):
1917069
PAR ID:
10535003
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
8
ISSN:
2169-897X
Page Range / eLocation ID:
e2023JD040397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Time-correlated high-speed video and electric field change data for 139 natural, negative cloud-to-ground (CG)-lightning flashes reveal 615 return strokes (RSs) and 29 upward-illumination (UI)-type strokes. Among 121 multi-stroke flashes, 56% visibly connected to more than one ground location for either a RS or UI-type stroke. The number of separate ground-stroke connection locations per CG flash averaged 1.74, with maximum 6. This study examines the 88 subsequent strokes that involved a subsequent stepped leader (SSL), either reaching ground or intercepting a former leader to ground, in 61 flashes. Two basic modes by which these SSLs begin are described and are termed dart - then - stepped leaders herein. One inception mode occurs when a dart leader deflects from the prior main channel and begins propagating as a stepped leader to ground. In these ‘divert’ mode cases, the relevant interstroke time from the prior RS in the channel to the SSL inception from that path is long, ranging from 105 to 204 ms in four visible cases. The alternative mode of SSL inception occurs when a dart leader reaches the end of a prior unsuccessful branch—of an earlier competing dart leader, stepped leader, or initial leader—then begins advancing as a stepped leader toward ground. In this more common ‘branch’ mode (85% of visible cases), there may be no portion of the subsequent RS channel that is shared with a prior RS channel. These two inception modes, and variations among them, can occur in different subsequent strokes of the same flash. 
    more » « less
  2. Abstract This study analyzes the two‐dimensional speed profiles of 107 stepped leaders and 93 dart leaders recorded by high‐speed cameras in Utah (USA), together with data from lightning location system. The results shows that the final and average speed of the stepped leader has a very strong (R = 0.82) and strong (R = 0.71) correlation with the peak current of the return stroke. It also shows that 91% of the stepped leaders increased their speed near the ground (average increase of 69%). The same analysis for dart leaders shows weak correlation with the peak current of the prospective return stroke (R = 0.39 to average speed andR = 0.28 to final speed). This paper briefly discusses why peak current is better correlated with final speed than with the average speed, and why stepped leaders exhibit a significant correlation, while dart leaders do not. 
    more » « less
  3. Abstract High‐speed video and electric field change data have been used to examine the initiation and propagation of 21 recoil leaders, 7 of which evolved into dart (or dart‐stepped) leaders (DLs) initiating return strokes and 14 were attempted leaders (ALs), in a Canton‐Tower upward flash. Three DLs and two ALs clearly exhibited bidirectional extension. Each DL was preceded by one or more ALs and initiated near the extremity of the positive end of the preceding AL. The positive end of each bidirectional DL generally appeared to be inactive (stationary) or intermittently propagated along the positive part of the preceding AL channel and extended into the virgin air. A sequence of two floating channel segments was formed ahead of the approaching positive end of one DL, causing its abrupt elongation. 
    more » « less
  4. Leaders of subsequent strokes in negative cloud-to-ground lightning are known to produce X-ray/gamma-ray emissions detectable at distances of a few kilometers or less from the lightning channel. These leaders usually develop in decayed but still warm channels of preceding strokes. We computed electric field waveforms at different points along the path of subsequent leader as those points are traversed by the leader tip. For a typical subsequent leader, the electric field peak is a few MV/m, which is sufficient for production of energetic radiation in a warm (reduced air density) channel. We examined the dependence of electric field peak on the leader model input parameters, including the prospective return-stroke peak current (a proxy for the leader tip potential) and leader propagation speed, and compared model predictions with measurements. 
    more » « less
  5. Abstract Streamers play a key role in the formation and propagation of lightning channels. In nature streamers rarely appear alone. Their ensemble behavior is very complex and challenging to describe. For instance, the intricate dynamics within the streamer zone of negative lightning leaders give rise to space stems, which help advance the stepped-leader. Another example is how the increasing morphological complexity of sprites can lead to higher sprite current and greater energy deposition in the mesosphere. Insights into the complex dynamics of a streamer corona can be obtained from laboratory experiments that allow us to control the conditions of streamer formation. Based on simultaneous nanosecond-temporal-resolution photography, and measurements of voltage, current, and x-ray emissions, we report the characteristics of negative laboratory streamers in 88 kPa of atmosphere. The streamers are produced at peak voltages of 62.2 ± 3.8 kV in a point-to-plane discharge gap of 6 cm. While all discharges were driven to the same peak voltage, the discharges occurred at different stages of the relatively slow voltage rise (177 ns), allowing us to study discharge properties as a function of onset voltage. The onset voltage ranged between 24 and 67 kV, but x-ray emissions were observed to only occur above 53 kV, with x-ray burst energies scaling quadratically with voltage. The average delay between the current pulse and x-ray emission was found to be 3.5 ± 0.5 ns, indicating that runaway electrons are produced during the streamer inception phase or no later than the transition stage, when the inception cloud is breaking into streamer filaments. During this short time span, runaway electrons can traverse the gap, hit the ground plate and produce bremsstrahlung x-ray photons. However, streamers themselves cannot traverse more than 3.5 mm across the gap, which supports the idea that runaway electron production is not associated to streamer connection to the ground electrode. 
    more » « less