skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NHERI Centrifuge Facility: Large-Scale Centrifuge Modeling in Geotechnical Research
Award ID(s):
1520581
PAR ID:
10398040
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Built Environment
Volume:
6
ISSN:
2297-3362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper compares experimental results from every facility for LEAP-UCD-2017. The specified experiment consisted of a submerged medium-dense clean sand with a 5-degree slope subjected to 1 Hz ramped sine wave base motion in a rigid container. The ground motions and soil density were intentionally varied from experiment to experiment in hopes of defining the slope of the relational trend between response (e.g., displacement, pore pressure), intensity of shaking, and density or relative density. This paper is also intended to serve as a useful starting point for overview of the experimental results and to help others find specific experiments if they want to select a subset for further analysis. The results of the experiments show significant differences between each other, but the responses show a significant correlation, R2 ~ 0.7–0.8, to the known variation of the input parameters. 
    more » « less
  2. The effect of soil interlayering on the measured cone penetration resistance was examined in a layered soil model tested on a 9-m radius centrifuge. The soil profile consisted of a layer of sand between overlying and underlying layers of low plasticity clayey silt. The sand layer thickness varied from 0 to 240 mm (model scale) along the length of the model. The sand was loose with a relative density of 44% on one side of the model, and dense with a relative density of 88% on the other side. The clayey silt had a plasticity index (PI) of 6 and over-consolidation ratio (OCR) of about 1.5. Multiple cone penetration soundings were performed along the width and length of the model using cone penetrometers with diameters of 4, 6 and 10 mm. The model construction procedure, data processing, and cone penetration testing results are described. 
    more » « less