skip to main content


Search for: All records

Award ID contains: 1520581

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tsunamis are rare, extreme events and cause significant damage to coastal infrastructure, which is often exacerbated by soil instability surrounding the structures. Simulating tsunamis in a laboratory setting is important to further understand soil instability induced by tsunami inundation processes. Laboratory simulations are difficult because the scale of such processes is very large, hence dynamic similitude cannot be achieved for small-scale models in traditional water-wave-tank facilities. The ability to control the body force in a centrifuge environment considerably reduces the mismatch in dynamic similitude. We review dynamic similitudes under a centrifuge condition for a fluid domain and a soil domain. A novel centrifuge apparatus specifically designed for exploring the physics of a tsunami-like flow on a soil bed is used to perform experiments. The present 1:40 model represents the equivalent geometric scale of a prototype soil field of 9.6 m deep, 21 m long, and 14.6 m wide. A laboratory facility capable of creating such conditions under the normal gravitational condition does not exist. With the use of a centrifuge, we are now able to simulate and measure tsunami-like loading with sufficiently high water pressure and flow velocities. The pressures and flow velocities in the model are identical to those of the prototype yielding realistic conditions of flow-soil interaction.

     
    more » « less
  2. Debris flow, landslides and material run-outs have significant environmental and economic consequences for numerous industries. High-quality experimental data with controlled boundary conditions can help validate and calibrate the predictive capabilities of mechanistic and semi-empirical numerical models. A novel centrifuge container to model dewatering and run-outs induced by a rapid loss of confinement is presented. The design features a pair of vertical doors opened in-flight to simulate failure of the containing structure. Illustrative centrifuge results investigating the run-out characteristics of a fully saturated, densely deposited class-F fly ash are presented. Modified soil moisture probes to monitor the distributions and time-varying fly-ash water content throughout the testing are explored. Furthermore, the successful use of depth-sensing cameras to reconstruct progressive deformations of the material front at various time scales is demonstrated. Combined water content, pore pressure and deformation measurements provide insight into the material behaviour during the run-out, revealing two time scales at which the deformations occur. However, discrepancies between water contents inferred from the dielectric measurements and electrical conductivities highlight the need for independent verification of the bulk material water content when using the modified probes. Overall, the potential of these innovative instrumentation techniques to complement traditional geotechnical instrumentation is shown. 
    more » « less
  3. This paper investigates and presents the numerical modeling and validation of the response of a uniform clean sand using monotonic and cyclic laboratory tests as well as a centrifuge model test comprised of a submerged slope. The dynamic response of the sand is modeled using a critical state compatible, stress ratio-based, bounding surface plasticity constitutive model (PM4Sand), implemented in the commercial finite-difference platform FLAC, and PM4Sand’s performance is evaluated against a comprehensive testing program comprised of laboratory data and a well-instrumented centrifuge model test. Three different calibrations informed by the lab and centrifuge data are performed and the goodness of the predictions is discussed. Conclusions are drawn with regards to the performance of the simulations against the laboratory and centrifuge data, and recommendations about the calibration of the model are provided. 
    more » « less
  4. Measuring displacements in model tests typically involves contact-based sensors such as linear potentiometers, where contact between two moving parts occurs at the sensing point. The sensor's finite mass, the limited stiffness of the beams and the clamping mechanism, and the slippage and hinging of the sensor body could affect the object's response and lead to measurement errors. Also, the physical mounting rack required to hold these sensors often obstructs the view and makes significant areas unavailable for conducting some other essential investigations. The advancement in high-speed, high-resolution and reasonably priced rugged cameras makes it feasible to obtain better displacement measurements by image analysis. This paper introduces a non-contact method that works by video recording the projection of laser lines on a test object to measure static and dynamic vertical displacements. The technique produces a continuous settlement distribution along the laser line passing through multiple objects of interest. This paper presents the theory for converting laser line images to displacements. The new method's validity is demonstrated by comparing the results from other measurement techniques: hand measurements, linear potentiometers and three-dimensional stereophotogrammetry. 
    more » « less
  5. We present data and metadata from a centrifuge testing program that was designed to investigate the seismic responses of buried circular and rectangular culverts. The specimen configurations were based on Caltrans Standard Plans, and the scope of research was to compare the experimental findings with the design method described in the NCHRP Report 611 as well as to formulate preliminary recommendations for Caltrans practice. A relatively flexible pipe and a stiff box-shaped specimen embedded in dense sand were tested in the centrifuge at the Center for Geotechnical Modeling at University of California, Davis and were subjected to a set of broadband and harmonic input motions. Responses were recorded in the soil and in the embedded structures using a dense array of instruments. Measured quantities included specimen accelerations, bending strains, and hoop strains; soil accelerations, shear-wave velocities, settlements, and lateral displacements; and accelerations of the centrifuge's shaking table. This data paper describes the tests and summarizes the generated data, which are archived at DesignSafe.ci.org (DOI: 10.17603/DS2XW9R) and are accessible through an interactive Jupyter notebook. 
    more » « less