skip to main content


Title: Utilization of Community Science Data to Explore Habitat Suitability of Basal Termite Genera
Abstract The advent of community-science databases in conjunction with museum specimen locality information has exponentially increased the power and accuracy of ecological niche modeling (ENM). Increased occurrence data has provided colossal potential to understand the distributions of lesser known or endangered species, including arthropods. Although niche modeling of termites has been conducted in the context of invasive and pest species, few studies have been performed to understand the distribution of basal termite genera. Using specimen records from the American Museum of Natural History (AMNH) as well as locality databases, we generated ecological niche models for 12 basal termite species belonging to six genera and three families. We extracted environmental data from the Worldclim 19 bioclimatic dataset v2, along with SoilGrids datasets and generated models using MaxEnt. We chose Optimal models based on partial Receiving Operating characteristic (pROC) and omission rate criterion and determined variable importance using permutation analysis. We also calculated response curves to understand changes in suitability with changes in environmental variables. Optimal models for our 12 termite species ranged in complexity, but no discernible pattern was noted among genera, families, or geographic range. Permutation analysis revealed that habitat suitability is affected predominantly by seasonal or monthly temperature and precipitation variation. Our findings not only highlight the efficacy of largely community-science and museum-based datasets, but our models provide a baseline for predictions of future abundance of lesser-known arthropod species in the face of habitat destruction and climate change.  more » « less
Award ID(s):
1950610
NSF-PAR ID:
10398051
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Editor(s):
Lozier, Jeffrey
Date Published:
Journal Name:
Insect Systematics and Diversity
Volume:
6
Issue:
4
ISSN:
2399-3421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent studies have used occupancy models (OM) and ecological niche models (ENM) to provide a better understanding of species’ distributions at different scales. One of the main ideas underlying the theoretical foundations of both OM and ENM is that they are positively related to abundance: higher occupancy implies higher density and more suitable areas are likely to have more abundant populations. Here, we analyze the relationship between habitat use measured in terms of occupancy probabilities from OM and environmental suitability derived from ENM in three different Neotropical mammal species: Leopardus wiedii, Cuniculus paca, and Dasypus novemcinctus. For ENM, we used climatic and vegetation cover variables and implemented a model calibration and selection protocol to select the most competitive models. For OM, we used a single-species, single-season model with site covariates for camera-trap data from six different sites throughout the Neotropical realm. Covariates included vegetation percentage, normalized difference vegetation index, normalized difference water index, and elevation. For each site, we fit OM using all possible combinations of variables and selected the most competitive (ΔAICc < 2) to build an average OM. We explored relationships between estimated suitability and occupancy values using Spearman correlation analysis. Relationships between ENM and OM tended to be positive for the three Neotropical mammals, but the strength varied among sites, which could be explained by local factors such as site characteristics and conservation status of areas. We conjecture that ENM are suitable to understand spatial patterns at coarser geographic scales because the concept of the niche is about the species as a whole, whereas OM are more relevant to explain the distribution locally, likely reflecting transient dynamics of populations resulting from many local factors such as community composition and biotic processes.

     
    more » « less
  2. Mistletoe spatial patterns are poorly understood on a macroecological scale. Previous research conducted at the family-level on Loranthaceae from Australia demonstrated that unlike most plants, mistletoe species richness patterns do not correlate significantly with water and energy input. However, field studies suggested a relationship between the structure of the host-parasite union (haustorium) and environment. We hypothesize that haustorial type influences relationships between the abiotic environment and mistletoe spatial patterns. To investigate this hypothesis, we constructed ecological niche models for individual haustorial types. We have previously compared the distributions of haustorial types in both geographic and environmental space using geographic mapping and PCA, respectively. Here, we expand on our study by examining species richness, constructing predictive models, and emphasizing habitat types. Using the haustorial specimen collection housed at the UC Herbarium and relevant literature, we identified the haustorial type of 55 of the 73 Australia Loranthaceae mistletoe species. Using geographic distributional data from the Atlas of Living Australia and environmental data from WorldClim, we plotted haustorial groups in both geographic and environmental space, compared clusters in principle component space, and calculated Hutchinsonian niche overlap. We used regression to analyze the relationship between species richness and environmental variables at the haustorial level. Lastly, we constructed maximum entropy models to estimate the probability of occurrence of each haustorial group, analyzing the relative contributions of each variable to each model. We discovered that haustorial type is relatively conserved among the Australian Loranthaceae mistletoe genera, with seven out of nine genera exhibiting one haustorial type. Species with epicortical roots (ER), the ancestral character, are exclusively associated with coastal regions while those with derived haustorial types occur across the continent, including desert regions. Environmental analyses confirmed that species with ER are found in regions with milder temperatures and higher precipitation than derived types. Species richness patterns of some haustorial types, including ER, are significantly correlated with most environmental variables, while derived haustorial types are not. Maxent models for species with ER haustoria predict the highest probability of occurrence for coastal regions, while models constructed for derived types feature less bias for coastal regions. Our models demonstrate that relationships between the abiotic environment and mistletoe spatial patterns depend in part on the haustorial type. Hypotheses proposed to explain relationships between abiotic constraint on distribution and haustorial type include differences in water uptake efficiency, exposure of haustoria to the environment, longevity of haustoria, and host preference of species. 
    more » « less
  3. Lozier, J (Ed.)
    Comparative phylogeographic studies can distinguish between idiosyncratic and community-wide responses to past environmental change. However, to date, the impacts of species interactions have been largely overlooked. Here we used non-genetic data to characterize two competing scenarios about expected levels of congruence among five deadwood-associated (saproxylic) invertebrate species (i.e., a wood-feeding cockroach, termite, and beetle; a predatory centipede, and a detritivorous millipede) from the southern Appalachian Mountains—a globally recognized center of endemism. Under one scenario, abiotic factors primarily drove species’ responses, with predicted congruence based on the spatial overlap of climatically stable habitat areas estimated for each species via ecological niche modeling. The second scenario considered biotic factors to be most influential, with proxies for species interactions used to predict congruence. Analyses of mitochondrial and nuclear DNA sequences focused on four axes of comparison: the number and geographic distribution of distinct spatial-genetic clusters, phylogeographic structure, changes in effective population size, and historical gene flow dynamics. Overall, we found stronger support for the ecological co-associations scenario, suggesting an important influence of biotic factors in constraining or facilitating species’ responses to Pleistocene climatic cycles. However, there was an imperfect fit between predictions and outcomes of genetic data analyses. Thus, while thought-provoking, conclusions remain tentative until additional data on species interactions becomes available. Ultimately, the approaches presented here advance comparative phylogeography by expanding the scope of inferences beyond solely considering abiotic drivers, which we believe is too simplistic. This work also provides conservation-relevant insights into the evolutionary history of a functionally important ecological community. 
    more » « less
  4. PLEASE CONTACT AUTHORS IF YOU CONTRIBUTE AND WOULD LIKE TO BE LISTED AS A CO-AUTHOR. (this message will be removed some time weeks/months after the first publication)

    Terrestrial Parasite Tracker indexed biotic interactions and review summary.

    The Terrestrial Parasite Tracker (TPT) project began in 2019 and is funded by the National Science foundation to mobilize data from vector and ectoparasite collections to data aggregators (e.g., iDigBio, GBIF) to help build a comprehensive picture of arthropod host-association evolution, distributions, and the ecological interactions of disease vectors which will assist scientists, educators, land managers, and policy makers. Arthropod parasites often are important to human and wildlife health and safety as vectors of pathogens, and it is critical to digitize these specimens so that they, and their biotic interaction data, will be available to help understand and predict the spread of human and wildlife disease.

    This data publication contains versioned TPT associated datasets and related data products that were tracked, reviewed and indexed by Global Biotic Interactions (GloBI) and associated tools. GloBI provides open access to finding species interaction data (e.g., predator-prey, pollinator-plant, pathogen-host, parasite-host) by combining existing open datasets using open source software.

    If you have questions or comments about this publication, please open an issue at https://github.com/ParasiteTracker/tpt-reporting or contact the authors by email.

    Funding:
    The creation of this archive was made possible by the National Science Foundation award "Collaborative Research: Digitization TCN: Digitizing collections to trace parasite-host associations and predict the spread of vector-borne disease," Award numbers DBI:1901932 and DBI:1901926

    References:
    Jorrit H. Poelen, James D. Simons and Chris J. Mungall. (2014). Global Biotic Interactions: An open infrastructure to share and analyze species-interaction datasets. Ecological Informatics. https://doi.org/10.1016/j.ecoinf.2014.08.005.

    GloBI Data Review Report

    Datasets under review:
     - University of Michigan Museum of Zoology Insect Division. Full Database Export 2020-11-20 provided by Erika Tucker and Barry Oconner. accessed via https://github.com/EMTuckerLabUMMZ/ummzi/archive/6731357a377e9c2748fc931faa2ff3dc0ce3ea7a.zip on 2022-06-24T14:02:48.801Z
     - Academy of Natural Sciences Entomology Collection for the Parasite Tracker Project accessed via https://github.com/globalbioticinteractions/ansp-para/archive/5e6592ad09ec89ba7958266ad71ec9d5d21d1a44.zip on 2022-06-24T14:04:22.091Z
     - Bernice Pauahi Bishop Museum, J. Linsley Gressitt Center for Research in Entomology accessed via https://github.com/globalbioticinteractions/bpbm-ent/archive/c085398dddd36f8a1169b9cf57de2a572229341b.zip on 2022-06-24T14:04:37.692Z
     - Texas A&M University, Biodiversity Teaching and Research Collections accessed via https://github.com/globalbioticinteractions/brtc-para/archive/f0a718145b05ed484c4d88947ff712d5f6395446.zip on 2022-06-24T14:06:40.154Z
     - Brigham Young University Arthropod Museum accessed via https://github.com/globalbioticinteractions/byu-byuc/archive/4a609ac6a9a03425e2720b6cdebca6438488f029.zip on 2022-06-24T14:06:51.420Z
     - California Academy of Sciences Entomology accessed via https://github.com/globalbioticinteractions/cas-ent/archive/562aea232ec74ab615f771239451e57b057dc7c0.zip on 2022-06-24T14:07:16.371Z
     - Clemson University Arthropod Collection accessed via https://github.com/globalbioticinteractions/cu-cuac/archive/6cdcbbaa4f7cec8e1eac705be3a999bc5259e00f.zip on 2022-06-24T14:07:40.925Z
     - Denver Museum of Nature and Science (DMNS) Parasite specimens (DMNS:Para) accessed via https://github.com/globalbioticinteractions/dmns-para/archive/a037beb816226eb8196533489ee5f98a6dfda452.zip on 2022-06-24T14:08:00.730Z
     - Field Museum of Natural History IPT accessed via https://github.com/globalbioticinteractions/fmnh/archive/6bfc1b7e46140e93f5561c4e837826204adb3c2f.zip on 2022-06-24T14:18:51.995Z
     - Illinois Natural History Survey Insect Collection accessed via https://github.com/globalbioticinteractions/inhs-insects/archive/38692496f590577074c7cecf8ea37f85d0594ae1.zip on 2022-06-24T14:19:37.563Z
     - UMSP / University of Minnesota / University of Minnesota Insect Collection accessed via https://github.com/globalbioticinteractions/min-umsp/archive/3f1b9d32f947dcb80b9aaab50523e097f0e8776e.zip on 2022-06-24T14:20:27.232Z
     - Milwaukee Public Museum Biological Collections Data Portal accessed via https://github.com/globalbioticinteractions/mpm/archive/9f44e99c49ec5aba3f8592cfced07c38d3223dcd.zip on 2022-06-24T14:20:46.185Z
     - Museum for Southern Biology (MSB) Parasite Collection accessed via https://github.com/globalbioticinteractions/msb-para/archive/178a0b7aa0a8e14b3fe953e770703fe331eadacc.zip on 2022-06-24T15:16:07.223Z
     - The Albert J. Cook Arthropod Research Collection accessed via https://github.com/globalbioticinteractions/msu-msuc/archive/38960906380443bd8108c9e44aeff4590d8d0b50.zip on 2022-06-24T16:09:40.702Z
     - Ohio State University Acarology Laboratory accessed via https://github.com/globalbioticinteractions/osal-ar/archive/876269d66a6a94175dbb6b9a604897f8032b93dd.zip on 2022-06-24T16:10:00.281Z
     - Frost Entomological Museum, Pennsylvania State University accessed via https://github.com/globalbioticinteractions/psuc-ento/archive/30b1f96619a6e9f10da18b42fb93ff22cc4f72e2.zip on 2022-06-24T16:10:07.741Z
     - Purdue Entomological Research Collection accessed via https://github.com/globalbioticinteractions/pu-perc/archive/e0909a7ca0a8df5effccb288ba64b28141e388ba.zip on 2022-06-24T16:10:26.654Z
     - Texas A&M University Insect Collection accessed via https://github.com/globalbioticinteractions/tamuic-ent/archive/f261a8c192021408da67c39626a4aac56e3bac41.zip on 2022-06-24T16:10:58.496Z
     - University of California Santa Barbara Invertebrate Zoology Collection accessed via https://github.com/globalbioticinteractions/ucsb-izc/archive/825678ad02df93f6d4469f9d8b7cc30151b9aa45.zip on 2022-06-24T16:12:29.854Z
     - University of Hawaii Insect Museum accessed via https://github.com/globalbioticinteractions/uhim/archive/53fa790309e48f25685e41ded78ce6a51bafde76.zip on 2022-06-24T16:12:41.408Z
     - University of New Hampshire Collection of Insects and other Arthropods UNHC-UNHC accessed via https://github.com/globalbioticinteractions/unhc/archive/f72575a72edda8a4e6126de79b4681b25593d434.zip on 2022-06-24T16:12:59.500Z
     - Scott L. Gardner and Gabor R. Racz (2021). University of Nebraska State Museum - Parasitology. Harold W. Manter Laboratory of Parasitology. University of Nebraska State Museum. accessed via https://github.com/globalbioticinteractions/unl-nsm/archive/6bcd8aec22e4309b7f4e8be1afe8191d391e73c6.zip on 2022-06-24T16:13:06.914Z
     - Data were obtained from specimens belonging to the United States National Museum of Natural History (USNM), Smithsonian Institution, Washington DC and digitized by the Walter Reed Biosystematics Unit (WRBU). accessed via https://github.com/globalbioticinteractions/usnmentflea/archive/ce5cb1ed2bbc13ee10062b6f75a158fd465ce9bb.zip on 2022-06-24T16:13:38.013Z
     - US National Museum of Natural History Ixodes Records accessed via https://github.com/globalbioticinteractions/usnm-ixodes/archive/c5fcd5f34ce412002783544afb628a33db7f47a6.zip on 2022-06-24T16:13:45.666Z
     - Price Institute of Parasite Research, School of Biological Sciences, University of Utah accessed via https://github.com/globalbioticinteractions/utah-piper/archive/43da8db550b5776c1e3d17803831c696fe9b8285.zip on 2022-06-24T16:13:54.724Z
     - University of Wisconsin Stevens Point, Stephen J. Taft Parasitological Collection accessed via https://github.com/globalbioticinteractions/uwsp-para/archive/f9d0d52cd671731c7f002325e84187979bca4a5b.zip on 2022-06-24T16:14:04.745Z
     - Giraldo-Calderón, G. I., Emrich, S. J., MacCallum, R. M., Maslen, G., Dialynas, E., Topalis, P., … Lawson, D. (2015). VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic acids research, 43(Database issue), D707–D713. doi:10.1093/nar/gku1117. accessed via https://github.com/globalbioticinteractions/vectorbase/archive/00d6285cd4e9f4edd18cb2778624ab31b34b23b8.zip on 2022-06-24T16:14:11.965Z
     - WIRC / University of Wisconsin Madison WIS-IH / Wisconsin Insect Research Collection accessed via https://github.com/globalbioticinteractions/wis-ih-wirc/archive/34162b86c0ade4b493471543231ae017cc84816e.zip on 2022-06-24T16:14:29.743Z
     - Yale University Peabody Museum Collections Data Portal accessed via https://github.com/globalbioticinteractions/yale-peabody/archive/43be869f17749d71d26fc820c8bd931d6149fe8e.zip on 2022-06-24T16:23:29.289Z

    Generated on:
    2022-06-24

    by:
    GloBI's Elton 0.12.4 
    (see https://github.com/globalbioticinteractions/elton).

    Note that all files ending with .tsv are files formatted 
    as UTF8 encoded tab-separated values files.

    https://www.iana.org/assignments/media-types/text/tab-separated-values


    Included in this review archive are:

    README:
      This file.

    review_summary.tsv:
      Summary across all reviewed collections of total number of distinct review comments.

    review_summary_by_collection.tsv:
      Summary by reviewed collection of total number of distinct review comments.

    indexed_interactions_by_collection.tsv: 
      Summary of number of indexed interaction records by institutionCode and collectionCode.

    review_comments.tsv.gz:
      All review comments by collection.

    indexed_interactions_full.tsv.gz:
      All indexed interactions for all reviewed collections.

    indexed_interactions_simple.tsv.gz:
      All indexed interactions for all reviewed collections selecting only sourceInstitutionCode, sourceCollectionCode, sourceCatalogNumber, sourceTaxonName, interactionTypeName and targetTaxonName.

    datasets_under_review.tsv:
      Details on the datasets under review.

    elton.jar: 
      Program used to update datasets and generate the review reports and associated indexed interactions.

    datasets.zip:
      Source datasets used by elton.jar in process of executing the generate_report.sh script.

    generate_report.sh:
      Program used to generate the report

    generate_report.log:
      Log file generated as part of running the generate_report.sh script
     

     
    more » « less
  5. The influence of functional traits on species survivorship has been evaluated in various contexts in both modern and ancient ecosystems, but an important direction for research is to integrate datasets that include both extinct and extant taxa. This approach can provide a more reliable understanding of the effects of functional traits on macroecological and macroevolutionary dynamics. Knowledge of the links between individual traits and survivorship is crucial for developing accurate extinction risk predictive models. Here we test the impact of numerous functional traits on the survival and extinction of species through time, using bivalve and gastropod species from the rich fossil record of the western Atlantic over the last ~3 million years, along with the associated extant biota. We also compare the impact of these organismic traits on survival relative to a group level trait: geographic distribution. Analyses use a dataset of 12 functional traits including life habit, feeding behavior and basal metabolic rate (BMR), for 115 species from 36 families. Traits were observed and measured from specimens in the collections of the Paleontological Research Institution, Florida Museum of Natural History, and University of Kansas, as well as surveys of the literature and online databases such as the Neogene Marine Biota of Tropical America (NMITA). Results derived from Principal Coordinates Analysis (PCoA) show there is a clear distinction between extinct and extant species, overall, when comparing them based on life habit, maximum body size, shell composition and BMR. Most traits showed little direct relation with survival, except BMR and associated maximum body size, supporting the Metabolic Theory of Ecology. Since many functional traits do not explain survival, their function may be mis- or over-interpreted, and traits posited to represent important organismic adaptations may not play a prominent role in long-term species survival, especially during the major climate changes over the last ~ 3 million years. Some traits do show significant interactions, and these were more fully explored using additional multivariate analyses. The relative importance of geographic range size suggests group-level characters may be the primary determinant of extinction patterns over macroevolutionary time scales. 
    more » « less