skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of Biogenic Gas Formation by Denitrification in Centrifuge
Microbially induced desaturation and precipitation (MIDP) via denitrification has the potential to reduce earthquake-induced liquefaction potential by two mechanisms: calcium carbonate precipitation to mechanically strengthen soil and biogenic gas production to desaturate and dampen pore pressure changes in soil. Lab-scale tests have demonstrated effective desaturation and improved mechanical strength by MIDP. However, in laboratory tests, gas pockets and lenses form causing upheaval as a result of low overburden pressures. The characteristics of biogenic gas formation, distribution, and retention need to be evaluated to gain comprehensive understanding of the effectiveness of this treatment at depth before and after an earthquake event. MIDP treatment during centrifuge loading conditions is being performed to simulate field stress conditions, prior to complete process scale-up for field application. A simplified numerical model was developed to evaluate the scaling effects on biogenic gas generation between the centrifuge model and prototype scale. The results indicate that diffusion of soluble N2 is negligible at both the model and prototype scales for the simulated reaction rate. However, the simplified model did not consider other pore-scale influences and mixing from liquid-gas transfer and transport. Future modeling work will need to add these features.  more » « less
Award ID(s):
1520581
PAR ID:
10398109
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
UNSAT 2018 The 7th International Conference on Unsaturated Soils
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microbially Induced Desaturation and Precipitation (MIDP) through denitrification is an emerging ground improvement method in which indigenous nitrate reducing bacteria are stimulated to introduce biogas, biominerals and biomass in the soil matrix. In this study, a numerical model is developed to evaluate the effect of biogas, biominerals and biomass on the hydraulic properties of soils treated with MIDP. The proposed model couples the biochemical conversions to changes of porosity and water saturation and predicts changes in permeability through two separate power law equations. Experimental studies from the literature are used to calibrate the model. Comparing the results with other studies on bioclogging or biomineralization in porous media reveals that the combined production of biogas, biomass, and biominerals results in efficient clogging, in the sense that only a small amount of products leads to a substantial permeability reduction. Based on this comparison, the authors postulate that biogenic gas bubbles preferably form within the larger pore bodies. The presence of biogenic gas in the larger pore bodies forces calcium carbonate minerals and biomass to be formed mainly at the pore throats. The interaction between the different phases results in more efficient clogging than observed in other studies which focus on a single product only. 
    more » « less
  2. Abstract Tsunamis are rare, extreme events and cause significant damage to coastal infrastructure, which is often exacerbated by soil instability surrounding the structures. Simulating tsunamis in a laboratory setting is important to further understand soil instability induced by tsunami inundation processes. Laboratory simulations are difficult because the scale of such processes is very large, hence dynamic similitude cannot be achieved for small-scale models in traditional water-wave-tank facilities. The ability to control the body force in a centrifuge environment considerably reduces the mismatch in dynamic similitude. We review dynamic similitudes under a centrifuge condition for a fluid domain and a soil domain. A novel centrifuge apparatus specifically designed for exploring the physics of a tsunami-like flow on a soil bed is used to perform experiments. The present 1:40 model represents the equivalent geometric scale of a prototype soil field of 9.6 m deep, 21 m long, and 14.6 m wide. A laboratory facility capable of creating such conditions under the normal gravitational condition does not exist. With the use of a centrifuge, we are now able to simulate and measure tsunami-like loading with sufficiently high water pressure and flow velocities. The pressures and flow velocities in the model are identical to those of the prototype yielding realistic conditions of flow-soil interaction. 
    more » « less
  3. Inverse analyses were used to evaluate the degree of partial drainage occurring during dynamic shaking of liquefying soil profiles in a set of centrifuge model tests. Three tests were performed using the 9-m radius centrifuge at the UC Davis Center for Geotechnical Modeling on saturated Ottawa sand models with initial relative densities of 25, 43, and 80%. Models were subjected to multiple sinusoidal shaking events with acceleration amplitudes ranging from 0.03 to 0.55g. Densely spaced pore pressure transducer arrays provided profiles of pore pressure generation and dissipation; inverse analyses of the pore pressure data were used to obtain volumetric strain profiles during shaking and dissipation. Surface settlements computed by integrating the volumetric strain profiles are compared to surface settlements measured from linear potentiometers. The magnitude of the volumetric strains due to partial drainage and their potential effects on liquefaction responses are discussed. 
    more » « less
  4. Rahman, M.; Jaksa, M. (Ed.)
    The field of biogeotechnics has emerged from the realization that processes intrinsic to natural systems can provide new approaches and inspiration through which the efficiency, sustainability, and functionality of geotechnical systems can be improved. Of these processes, microbially induced calcite precipitation (MICP) has advanced the most rapidly with the use of ureolytic microbial activity providing an opportunity to control the precipitation of calcium carbonate minerals throughout a soil matrix, thereby significantly improving soil engineering behaviors. The process affords increases in soil stiffness, strength, and dilatancy, with utility across a breadth of geotechnical and geoenvironmental applications, including mitigation of earthquake- induced soil liquefaction. This state of the art paper first covers: (1) enabling scientific processes, (2) treatment methods, and (3) monitoring techniques, which are broadly useful for different engineering applications. The second part focuses on how MICP can: (1) improve engineering behaviors at the element scale, (2) be modeled at the particle- and continuum-scales, (3) be applied at the field-scale, and (4) improve the resistance to liquefaction triggering and reduce the consequences when it does occur. 
    more » « less
  5. A series of centrifuge tests of a sloping ground were conducted at Rensselaer Polytechnic Institute (RPI). These tests were used to monitor and assess the soil response, in terms of generated accelerations, excess pore water pressure (EPWP) and associated lateral spreading, as a function of variations in the dynamic input motion and soil relative density. This series of tests are part of the Liquefaction Experiments and Analysis Projects (LEAP-2017), an international effort to assess the repeatability and reproducibility of centrifuge experimental results, and verify and validate soil liquefaction numerical tools using the experimental data. 
    more » « less