skip to main content

Title: Non-Hermitian Floquet-free analytically solvable time-dependent systems [Invited]

The non-Hermitian models, which are symmetric under parity (P) and time-reversal (T) operators, are the cornerstone for the fabrication of new ultra-sensitive optoelectronic devices. However, providing the gain in such systems usually demands precise control of nonlinear processes, limiting their application. In this paper, to bypass this obstacle, we introduce a class of time-dependent non-Hermitian Hamiltonians (not necessarily Floquet) that can describe a two-level system with temporally modulated on-site potential and couplings. We show that implementing an appropriate non-Unitary gauge transformation converts the original system to an effective one with a balanced gain and loss. This will allow us to derive the evolution of states analytically. Our proposed class of Hamiltonians can be employed in different platforms such as electronic circuits, acoustics, and photonics to design structures with hiddenPT-symmetry potentially without imaginary onsite amplification and absorption mechanism to obtain an exceptional point.

more » « less
Award ID(s):
2231387 2012172
Author(s) / Creator(s):
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Page Range / eLocation ID:
Article No. 678
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Unlike their fermionic counterparts, the dynamics of Hermitian quadratic bosonic Hamiltonians are governed by a generally non-Hermitian Bogoliubov-de Gennes effective Hamiltonian. This underlying non-Hermiticity gives rise to adynamically stableregime, whereby all observables undergo bounded evolution in time, and adynamically unstableone, whereby evolution is unbounded for at least some observables. We show that stability-to-instability transitions may be classified in terms of a suitablygeneralizedPTsymmetry, which can be broken when diagonalizability is lost at exceptional points in parameter space, but also when degenerate real eigenvalues split off the real axis while the system remains diagonalizable. By leveraging tools from Krein stability theory in indefinite inner-product spaces, we introduce an indicator of stability phase transitions, which naturally extends the notion of phase rigidity from non-Hermitian quantum mechanics to the bosonic setting. As a paradigmatic example, we fully characterize the stability phase diagram of a bosonic analogue to the Kitaev–Majorana chain under a wide class of boundary conditions. In particular, we establish a connection between phase-dependent transport properties and the onset of instability, and argue that stable regions in parameter space become of measure zero in the thermodynamic limit. Our analysis also reveals that boundary conditions that support Majorana zero modes in the fermionic Kitaev chain are precisely the same that support stability in the bosonic chain.

    more » « less
  2. Non-Hermitian Hamiltonians provide an alternative perspective on the dynamics of quantum and classical systems coupled non-conservatively to an environment. Once primarily an interest of mathematical physicists, the theory of non-Hermitian Hamiltonians has solidified and expanded to describe various physically observable phenomena in optical, photonic, and condensed matter systems. Self-consistent descriptions of quantum mechanics based on non-Hermitian Hamiltonians have been developed and continue to be refined. In particular, non-Hermitian frameworks to describe magnonic and hybrid magnonic systems have gained popularity and utility in recent years with new insights into the magnon topology, transport properties, and phase transitions coming into view. Magnonic systems are in many ways a natural platform in which to realize non-Hermitian physics because they are always coupled to a surrounding environment and exhibit lossy dynamics. In this Perspective, we review recent progress in non-Hermitian frameworks to describe magnonic and hybrid magnonic systems, such as cavity magnonic systems and magnon–qubit coupling schemes. We discuss progress in understanding the dynamics of inherently lossy magnetic systems as well as systems with gain induced by externally applied spin currents. We enumerate phenomena observed in both purely magnonic and hybrid magnonic systems which can be understood through the lens of non-Hermitian physics, such as PT and anti-PT-symmetry breaking, dynamical magnetic phase transitions, non-Hermitian skin effect, and the realization of exceptional points and surfaces. Finally, we comment on some open problems in the field and discuss areas for further exploration.

    more » « less
  3. null (Ed.)
    Abstract In the past few years, concepts from non-Hermitian (NH) physics, originally developed within the context of quantum field theories, have been successfully deployed over a wide range of physical settings where wave dynamics are known to play a key role. In optics, a special class of NH Hamiltonians – which respects parity-time symmetry – has been intensely pursued along several fronts. What makes this family of systems so intriguing is the prospect of phase transitions and NH singularities that can in turn lead to a plethora of counterintuitive phenomena. Quite recently, these ideas have permeated several other fields of science and technology in a quest to achieve new behaviors and functionalities in nonconservative environments that would have otherwise been impossible in standard Hermitian arrangements. Here, we provide an overview of recent advancements in these emerging fields, with emphasis on photonic NH platforms, exceptional point dynamics, and the very promising interplay between non-Hermiticity and topological physics. 
    more » « less
  4. Engineered non-Hermitian systems featuring exceptional points (EPs) can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, and electronics to atomic physics. In optics, non-Hermitian dynamics are typically realized using dissipation and phase-insensitive gain accompanied by unavoidable fluctuations. Here, we introduce non-Hermitian dynamics of coupled optical parametric oscillators (OPOs) arising from phase-sensitive amplification and de-amplification, and show their distinct advantages over conventional non-Hermitian systems relying on laser gain and loss. OPO-based non-Hermitian systems can benefit from the instantaneous nature of the parametric gain, noiseless phase-sensitive amplification, and rich quantum and classical nonlinear dynamics. We show that two coupled OPOs can exhibit spectral anti-parity-time (anti-PT) symmetry and a EP between its degenerate and nondegenerate operation regimes. To demonstrate the distinct potentials of the coupled OPO system compared to conventional non-Hermitian systems, we present higher-order EPs with two OPOs, tunable Floquet EPs in a reconfigurable dynamic non-Hermitian system, and the generation of a squeezed vacuum around EPs, all of which are not easy to realize in other non-Hermitian platforms. We believe our results show that coupled OPOs are an outstanding non-Hermitian setting with unprecedented opportunities to realize nonlinear dynamical systems for enhanced sensing and quantum information processing.

    more » « less
  5. Recently, our groups have introduced the notion of optical parametric amplification based on non-Hermitian phase matching wherein the incorporation of loss can lead to gain in this nonlinear optical process. Previous simulation results using second-order nonlinear optical coupled-mode theory have demonstrated the potential of this technique as an alternative to the stringent phase-matching condition, which is often difficult to achieve in semiconductor platforms. Here we fortify this notion for the case of third-order nonlinearity by considering parametric amplification in silicon nanowires and illustrate the feasibility of these devices by employing rigorous finite-difference time-domain analysis using realistic materials and geometric parameters. Particularly, we demonstrate that by systematic control of the optical loss of the idler in a four-wave mixing process, we can achieve efficient unidirectional energy conversion from the pump to the signal component even when the typical phase-matching condition is violated. Importantly, our simulations show that a signal gain of∼<#comment/>9dBfor a waveguide length of a few millimeters is possible over a large bandwidth of several hundreds of nanometers (∼<#comment/>600nm). This bandwidth is nearly 2 orders of magnitude larger than what can be achieved in the conventional silicon-photonics-based four-wave mixing process.

    more » « less