skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-Hermitian Floquet-free analytically solvable time-dependent systems [Invited]
The non-Hermitian models, which are symmetric under parity (P) and time-reversal (T) operators, are the cornerstone for the fabrication of new ultra-sensitive optoelectronic devices. However, providing the gain in such systems usually demands precise control of nonlinear processes, limiting their application. In this paper, to bypass this obstacle, we introduce a class of time-dependent non-Hermitian Hamiltonians (not necessarily Floquet) that can describe a two-level system with temporally modulated on-site potential and couplings. We show that implementing an appropriate non-Unitary gauge transformation converts the original system to an effective one with a balanced gain and loss. This will allow us to derive the evolution of states analytically. Our proposed class of Hamiltonians can be employed in different platforms such as electronic circuits, acoustics, and photonics to design structures with hiddenPT-symmetry potentially without imaginary onsite amplification and absorption mechanism to obtain an exceptional point.  more » « less
Award ID(s):
2231387 2012172
PAR ID:
10398162
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
13
Issue:
3
ISSN:
2159-3930
Format(s):
Medium: X Size: Article No. 678
Size(s):
Article No. 678
Sponsoring Org:
National Science Foundation
More Like this
  1. Non-Hermitian Hamiltonians provide an alternative perspective on the dynamics of quantum and classical systems coupled non-conservatively to an environment. Once primarily an interest of mathematical physicists, the theory of non-Hermitian Hamiltonians has solidified and expanded to describe various physically observable phenomena in optical, photonic, and condensed matter systems. Self-consistent descriptions of quantum mechanics based on non-Hermitian Hamiltonians have been developed and continue to be refined. In particular, non-Hermitian frameworks to describe magnonic and hybrid magnonic systems have gained popularity and utility in recent years with new insights into the magnon topology, transport properties, and phase transitions coming into view. Magnonic systems are in many ways a natural platform in which to realize non-Hermitian physics because they are always coupled to a surrounding environment and exhibit lossy dynamics. In this Perspective, we review recent progress in non-Hermitian frameworks to describe magnonic and hybrid magnonic systems, such as cavity magnonic systems and magnon–qubit coupling schemes. We discuss progress in understanding the dynamics of inherently lossy magnetic systems as well as systems with gain induced by externally applied spin currents. We enumerate phenomena observed in both purely magnonic and hybrid magnonic systems which can be understood through the lens of non-Hermitian physics, such as PT and anti-PT-symmetry breaking, dynamical magnetic phase transitions, non-Hermitian skin effect, and the realization of exceptional points and surfaces. Finally, we comment on some open problems in the field and discuss areas for further exploration. 
    more » « less
  2. Engineered non-Hermitian systems featuring exceptional points (EPs) can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, and electronics to atomic physics. In optics, non-Hermitian dynamics are typically realized using dissipation and phase-insensitive gain accompanied by unavoidable fluctuations. Here, we introduce non-Hermitian dynamics of coupled optical parametric oscillators (OPOs) arising from phase-sensitive amplification and de-amplification, and show their distinct advantages over conventional non-Hermitian systems relying on laser gain and loss. OPO-based non-Hermitian systems can benefit from the instantaneous nature of the parametric gain, noiseless phase-sensitive amplification, and rich quantum and classical nonlinear dynamics. We show that two coupled OPOs can exhibit spectral anti-parity-time (anti-PT) symmetry and a EP between its degenerate and nondegenerate operation regimes. To demonstrate the distinct potentials of the coupled OPO system compared to conventional non-Hermitian systems, we present higher-order EPs with two OPOs, tunable Floquet EPs in a reconfigurable dynamic non-Hermitian system, and the generation of a squeezed vacuum around EPs, all of which are not easy to realize in other non-Hermitian platforms. We believe our results show that coupled OPOs are an outstanding non-Hermitian setting with unprecedented opportunities to realize nonlinear dynamical systems for enhanced sensing and quantum information processing. 
    more » « less
  3. In this paper, we explore the operation of a nonreciprocal non-Hermitian system consisting of a lossy magneto-optical ring resonator coupled to another ring resonator with gain and loss, and we demonstrate that such a system can exhibit non-reciprocity-based broken parity-time (PT) symmetry and supports one-way exceptional points. The nonreciprocal PT-phase transition is analyzed with the use of both analytical tools based on coupled-mode theory and two-dimensional finite element method simulations. Our calculations show that the response of the system strongly depends on the regime of operation – broken or preserved PT-symmetry. This response is leveraged to show that the system can operate as an optical isolator or a one-way laser with functionality tuned by adjusting loss/gain in the second ring resonator. The proposed system can thus be promising for device applications such as magnetically or even optically switchable non-reciprocal devices and one-way micro-ring lasers. 
    more » « less
  4. In this work, we first show a simple approach to constructing non-Hermitian Hamiltonians with a real spectrum, which are not obtained by a non-unitary transformation such as the imaginary gauge transformation. They are given, instead, by the product of a Hermitian Hamiltonian H0 and a positive semi-definite matrix A. Depending on whether A has zero eigenvalue(s), the resulting H can possess an exceptional point at zero energy. When A is only required to be Hermitian instead, the resulting H is pseudo-Hermitian that can have real and complex conjugate energy levels. In the special case where A is diagonal, we compare our approach to an imaginary gauge transformation, which reveals a selective non-Hermitian skin effect in our approach, i.e., only the zero mode is a skin mode and the non-zero modes reside in the bulk. We further show that this selective non-Hermitian skin mode has a much lower lasing threshold than its counterpart in the standard non-Hermitian skin effect with the same spatial profile, when we pump at the boundary where they are localized. The form of our construction can also be found, for example, in dynamical matrices describing coupled frictionless harmonic oscillators with different masses. 
    more » « less
  5. Abstract An extensive number of the eigenstates can become exponentially localized at one boundary of nonreciprocal non-Hermitian systems. This effect is known as the non-Hermitian skin effect and has been studied mostly in tight-binding lattices. To extend the skin effect to continues systems beyond 1D, we introduce a quadratic imaginary vector potential in the continuous two dimensional Schrödinger equation. We find that inseparable eigenfunctions for separable nonreciprocal Hamiltonians appear under infinite boundary conditions. Introducing boundaries destroy them and hence they can only be used as quasi-stationary states in practice. We show that all eigenstates can be clustered at the point where the imaginary vector potential is minimum in a confined system. 
    more » « less