Abstract We present timing solutions for 21 pulsars discovered in 350 MHz surveys using the Green Bank Telescope (GBT). All were discovered in the Green Bank North Celestial Cap pulsar survey, with the exception of PSR J0957−0619, which was found in the GBT 350 MHz Drift-scan pulsar survey. The majority of our timing observations were made with the GBT at 820 MHz. With a spin period of 37 ms and a 528 days orbit, PSR J0032+6946 joins a small group of five other mildly recycled wide binary pulsars, for which the duration of recycling through accretion is limited by the length of the companion’s giant phase. PSRs J0141+6303 and J1327+3423 are new disrupted recycled pulsars. We incorporate Arecibo observations from the NANOGrav pulsar timing array into our analysis of the latter. We also observed PSR J1327+3423 with the Long Wavelength Array, and our data suggest a frequency-dependent dispersion measure. PSR J0957−0619 was discovered as a rotating radio transient, but is a nulling pulsar at 820 MHz. PSR J1239+3239 is a new millisecond pulsar (MSP) in a 4 days orbit with a low-mass companion. Four of our pulsars already have published timing solutions, which we update in this work: the recycled wide binary PSR J0214+5222, the noneclipsing black widow PSR J0636+5128, the disrupted recycled pulsar J1434+7257, and the eclipsing binary MSP J1816+4510, which is in an 8.7 hr orbit with a redback-mass companion.
more »
« less
The Green Bank North Celestial Cap Survey. VII. 12 New Pulsar Timing Solutions
Abstract We present timing solutions for 12 pulsars discovered in the Green Bank North Celestial Cap 350 MHz pulsar survey, including six millisecond pulsars (MSPs), a double neutron star (DNS) system, and a pulsar orbiting a massive white dwarf companion. Timing solutions presented here include 350 and 820 MHz Green Bank Telescope data from initial confirmation and follow-up, as well as a dedicated timing campaign spanning 1 ryr PSR J1122−3546 is an isolated MSP, PSRs J1221−0633 and J1317−0157 are MSPs in black widow systems and regularly exhibit eclipses, and PSRs J2022+2534 and J2039−3616 are MSPs that can be timed with high precision and have been included in pulsar timing array experiments seeking to detect low-frequency gravitational waves. PSRs J1221−0633 and J2039−3616 have Fermi Large Area Telescope gamma-ray counterparts and also exhibit significant gamma-ray pulsations. We measure proper motions for three of the MSPs in this sample and estimate their space velocities, which are typical compared to those of other MSPs. We have detected the advance of periastron for PSR J1018−1523 and therefore measure the total mass of the DNS system,mtot= 2.3 ± 0.3M⊙. Long-term pulsar timing with data spanning more than 1 yr is critical for classifying recycled pulsars, carrying out detailed astrometry studies, and shedding light on the wealth of information in these systems post-discovery.
more »
« less
- Award ID(s):
- 2020265
- PAR ID:
- 10398225
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 944
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 154
- Size(s):
- Article No. 154
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the discovery of ten new pulsars in the globular cluster Terzan 5 as part of the Transients and Pulsars with MeerKAT (TRAPUM) Large Survey Project. We observed Terzan 5 atL-band (856–1712 MHz) with the MeerKAT radio telescope for four hours on two epochs, and performed acceleration searches of 45 out of 288 tied-array beams covering the core of the cluster. We obtained phase-connected timing solutions for all ten discoveries, covering nearly two decades of archival observations from the Green Bank Telescope for all but one. Highlights include PSR J1748−2446ao which is an eccentric (e = 0.32) wide-orbit (orbital periodPb = 57.55 d) system. We were able to measure the rate of advance of periastron (ω̇) for this system allowing us to determine a total mass of 3.17 ± 0.02 M⊙. With a minimum companion mass (Mc) of ∼0.8 M⊙, PSR J1748−2446ao is a candidate double neutron star (DNS) system. If confirmed to be a DNS, it would be the fastest spinning pulsar (P = 2.27 ms) and the longest orbital period measured for any known DNS system. PSR J1748−2446ap has the second highest eccentricity for any recycled pulsar (e ∼ 0.905) and for this system we can measure the total mass (1.997 ± 0.006 M⊙) and estimate the pulsar and companion masses, (1.700−0.045+0.015 M⊙and 0.294−0.014+0.046 M⊙, respectively). PSR J1748−2446ar is an eclipsing redback (minimumMc ∼ 0.34 M⊙) system whose properties confirm it to be the counterpart to a previously published source identified in radio and X-ray imaging. We were also able to detectω̇for PSR J1748−2446au leading to a total mass estimate of 1.82 ± 0.07 M⊙and indicating that the system is likely the result of Case A Roche lobe overflow. With these discoveries, the total number of confirmed pulsars in Terzan 5 is 49, the highest for any globular cluster so far. These discoveries further enhance the rich set of pulsars known in Terzan 5 and provide scope for a deeper understanding of binary stellar evolution, cluster dynamics and ensemble population studies.more » « less
-
Abstract We present the discovery and timing solutions of four millisecond pulsars (MSPs) discovered in the Arecibo 327 MHz Drift-Scan Pulsar Survey. Three of these pulsars are in binary systems, consisting of a redback (PSR J2055+1545), a black widow (PSR J1630+3550), and a neutron star–white dwarf binary (PSR J2116+1345). The fourth MSP, PSR J2212+2450, is isolated. We present the multiyear timing solutions as well as polarization properties across a range of radio frequencies for each pulsar. We perform a multiwavelength search for emission from these systems and find an optical counterpart for PSR J2055+1545 in Gaia DR3, as well as a gamma-ray counterpart for PSR J2116+1345 with the Fermi-LAT telescope. Despite the close colocation of PSR J2055+1545 with a Fermi source, we are unable to detect gamma-ray pulsations, likely due to the large orbital variability of the system. This work presents the first two binaries found by this survey with orbital periods shorter than a day; we expect to find more in the 40% of the survey data that have yet to be searched.more » « less
-
Abstract We have searched for radio pulsations toward 49 Fermi Large Area Telescope (LAT) 1FGL Catalogγ-ray sources using the Green Bank Telescope at 350 MHz. We detected 18 millisecond pulsars (MSPs) in blind searches of the data; 10 of these were discoveries unique to our survey. 16 are binaries, with eight having short orbital periodsPB< 1 day. No radio pulsations from young pulsars were detected, although three targets are coincident with apparently radio-quietγ-ray pulsars discovered in LAT data. Here, we give an overview of the survey and present radio andγ-ray timing results for the 10 MSPs discovered. These include the only isolated MSP discovered in our survey and six short-PBbinary MSPs. Of these, three have very-low-mass companions (Mc≪ 0.1M⊙) and hence belong to the class of black widow pulsars. Two have more massive, nondegenerate companions with extensive radio eclipses and orbitally modulated X-ray emission consistent with the redback class. Significantγ-ray pulsations have been detected from nine of the discoveries. This survey and similar efforts suggest that the majority of Galacticγ-ray sources at high Galactic latitudes are either MSPs or relatively nearby nonrecycled pulsars, with the latter having on average a much smaller radio/γ-ray beaming ratio as compared to MSPs. It also confirms that past surveys suffered from an observational bias against finding short-PBMSP systems.more » « less
-
Abstract The Green Bank 820 MHz pulsar survey covers ≃173 deg2in the Cygnus X region of the Galaxy, centered onl= 84.°5 andb= 1.°5. Significant star formation is present in this region, and lines of sight pass through three arms of the Galaxy (Orion–Cygnus, Perseus, and an outer arm). Using the Green Bank Telescope, we recorded 200 MHz of bandwidth for 4.5 minutes at 81.92μs resolution for each of 3457 observed survey pointings during 2016 and 2017, covering about two-thirds of the total area. We searched these data for pulsars and report the discovery of six new pulsars—PSRs J2016+3820, J2016+4231, J2019+3810, J2035+3538, J2035+3655, and J2041+4551—and the codiscovery of PSR J2057+4701. PSR J2035+3655 is in a short (4.5 hr) binary orbit; we report the full binary solution and weakly constrain the mass of the pulsar via a marginal (2σ) detection of the Shapiro delay. We also searched the survey data for known pulsars to estimate the survey’s sensitivity and measured 820 MHz pulse widths and flux density for 20 detected sources. For sources that were also detected in the Green Bank North Celestial Cap survey at 350 MHz, we measure scattering parameters and compare to expectations for the region. With these results, we revisit the population estimates that motivated this survey and consider the impact of the survey’s yield on their underlying models. We note an apparent underestimate in dispersion measure predictions from typical Galactic electron density models in the survey region, and discuss future observation strategies.more » « less