skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phased Implementation of COVID-19 Vaccination: Rapid Assessment of Policy Adoption, Reach and Effectiveness to Protect the Most Vulnerable in the US
The US and the rest of the world have suffered from the COVID-19 pandemic for over a year. The high transmissibility and severity of this virus have provoked governments to adopt a variety of mitigation strategies. Some of these previous measures, such as social distancing and mask mandates, were effective in reducing the case growth rate yet became economically and administratively difficult to enforce as the pandemic continued. In late December 2020, COVID-19 vaccines were first approved in the US and states began a phased implementation of COVID-19 vaccination. However, there is limited quantitative evidence regarding the effectiveness of the phased COVID-19 vaccination. This study aims to provide a rapid assessment of the adoption, reach, and effectiveness of the phased implementation of COVID-19 vaccination. We utilize an event-study analysis to evaluate the effect of vaccination on the state-level daily COVID-19 case growth rate. Through this analysis, we assert that vaccination was effective in reducing the spread of COVID-19 shortly after the first shots were given. Specifically, the case growth rate declined by 0.124, 0.347, 0.345, 0.464, 0.490, and 0.756 percentage points corresponding to the 1–5, 6–10, 11–15, 16–20, 21–25, and 26 or more day periods after the initial shots. The findings could be insightful for policymakers as they work to optimize vaccine distribution in later phases, and also for the public as the COVID-19 related health risk is a contentious issue.  more » « less
Award ID(s):
1841520
PAR ID:
10398253
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Journal of Environmental Research and Public Health
Volume:
18
Issue:
14
ISSN:
1660-4601
Page Range / eLocation ID:
7665
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Social distancing policies have been regarded as effective in containing the rapid spread of COVID-19. However, there is a limited understanding of policy effectiveness from a spatiotemporal perspective. This study integrates geographical, demographical, and other key factors into a regression-based event study framework, to assess the effectiveness of seven major policies on human mobility and COVID-19 case growth rates, with a spatiotemporal emphasis. Our results demonstrate that stay-at-home orders, workplace closures, and public information campaigns were effective in decreasing the confirmed case growth rate. For stay-at-home orders and workplace closures, these changes were associated with significant decreases (p < 0.05) in mobility. Public information campaigns did not see these same mobility trends, but the growth rate still decreased significantly in all analysis periods (p < 0.01). Stay-at-home orders and international/national travel controls had limited mitigation effects on the death case growth rate (p < 0.1). The relationships between policies, mobility, and epidemiological metrics allowed us to evaluate the effectiveness of each policy and gave us insight into the spatiotemporal patterns and mechanisms by which these measures work. Our analysis will provide policymakers with better knowledge regarding the effectiveness of measures in space–time disaggregation. 
    more » « less
  2. Abstract Background Despite the development of safe and effective vaccines, effective treatments for COVID-19 disease are still urgently needed. Several antiviral drugs have shown to be effective in reducing progression of COVID-19 disease. Methods In the present work, we use an agent-based mathematical model to assess the potential population impact of the use of antiviral treatments in four countries with different demographic structure and current levels of vaccination coverage: Kenya, Mexico, United States (US) and Belgium. We analyzed antiviral effects on reducing hospitalization and death, and potential antiviral effects on reducing transmission. For each country, we varied daily treatment initiation rate (DTIR) and antiviral effect in reducing transmission (AVT). Results Irrespective of location and AVT, widespread antiviral treatment of symptomatic adult infections (20% DTIR) prevented the majority of COVID-19 deaths, and recruiting 6% of all adult symptomatic infections daily reduced mortality by over 20% in all countries. Furthermore, our model projected that targeting antiviral treatment to the oldest age group (65 years old and older, DTIR of 20%) can prevent over 30% of deaths. Our results suggest that early antiviral treatment (as soon as possible after inception of infection) is needed to mitigate transmission, preventing 50% more infections compared to late treatment (started 3 to 5 days after symptoms onset). Our results highlight the synergistic effect of vaccination and antiviral treatment: as the vaccination rate increases, antivirals have a larger relative impact on population transmission. Finally, our model projects that even in highly vaccinated populations, adding antiviral treatment can be extremely helpful to mitigate COVID-19 deaths. Conclusions These results suggest that antiviral treatments can become a strategic tool that, in combination with vaccination, can significantly reduce COVID-19 hospitalizations and deaths and can help control SARS-CoV-2 transmission. 
    more » « less
  3. null (Ed.)
    Abstract Background Global vaccine development efforts have been accelerated in response to the devastating coronavirus disease 2019 (COVID-19) pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States. Methods We developed an agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, whereas children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achieving 40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection and specified 10% preexisting population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current nonpharmaceutical interventions in the United States. Results Vaccination reduced the overall attack rate to 4.6% (95% credible interval [CrI]: 4.3%–5.0%) from 9.0% (95% CrI: 8.4%–9.4%) without vaccination, over 300 days. The highest relative reduction (54%–62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-intensive care unit (ICU) hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3%–66.7%), 65.6% (95% CrI: 62.2%–68.6%), and 69.3% (95% CrI: 65.5%–73.1%), respectively, across the same period. Conclusions Our results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with nonpharmaceutical interventions is essential to achieve this impact. 
    more » « less
  4. The emergence of multiple strains of SARS-COV-2 has made it complicated to predict and control the COVID-19 pandemic. Although some vaccines have been effective in reducing the severity of the disease, these vaccines are designed for a specific strain of the virus and are usually less effective for other strains. In addition, the waning of vaccine-induced immunity, reinfection of recovered people, and incomplete vaccination are challenging to the vaccination program. In this study, we developed a detailed model to describe the multi-strain transmission dynamics of COVID-19 under vaccination. We implemented our model to examine the impact of inter-strain transmission competition under vaccination on the critical outbreak indicators: hospitalized cases, undiagnosed cases, basic reproduction numbers, and the overtake-time by a new strain to the existing strain. In particular, our results on the dependence of the overtake-time on vaccination rates, progression-to-infectious rate, and relative transmission rates provide helpful information for managing a pandemic with circulating two strains. Furthermore, our results suggest that a reduction in the relative transmission rates and a decrease in vaccination dropout rates or an increase in vaccination rates help keep the reproduction number of both strains below unity and keep the number of hospitalized cases and undiagnosed cases at their lowest levels. Moreover, our analysis shows that the second and booster-dose vaccinations are useful for further reducing the reproduction number. 
    more » « less
  5. Stimpson, Jim P (Ed.)
    Introduction The Latinx population has the second highest COVID-19 death rate among racial/ethnic groups in the United States and less than half of Latinx youth aged 5–17 years old completed their COVID-19 primary vaccination series as of September 2022. COVID-19 vaccine misinformation detrimentally impacts vaccination rates. In this study, we examined factors that predicted Latinx youth COVID-19 vaccine hesitancy and vaccination status. Methods A community-based sample of 290 Latinx parent and adolescent dyads from a Southwestern metropolitan area of the United States who were recruited to complete an online survey at baseline at T1 (August 2020 –March 2021) and one year later. We tested a longitudinal mediation model in which we examined individual and family factors that would predict youth COVID-19 vaccine hesitancy and vaccination status over time. Results Youth’s pandemic disbelief (i.e., the belief that the COVID-19 pandemic is a conspiracy or not real) predicted greater youth’s COVID-19 vaccine hesitancy, and in turn, a lower likelihood of youth’s COVID-19 vaccination. Youth’s pandemic disbelief also predicted greater parent’s vaccination hesitancy which, in turn, predicted greater youth’s vaccination hesitancy and a lower likelihood of COVID-19 vaccination. Parents’ pandemic disbelief predicted their own COVID-19 hesitancy, but not youth hesitancy Discussion Our study findings provide initial evidence that general pandemic disbelief was a significant driver of vaccine hesitancy and vaccination among Latinx families. The study contributes to the limited research investigating COVID-19 vaccination in the Latinx community and among Latinx youth, further aiding how COVID-19 vaccine disparities can be mitigated among racial/ethnic populations. 
    more » « less