skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health
Global changes in response to human encroachment into natural habitats and carbon emissions are driving the biodiversity extinction crisis and increasing disease emergence risk. Host distributions are one critical component to identify areas at risk of viral spillover, and bats act as reservoirs of diverse viruses. We developed a reproducible ecological niche modelling pipeline for bat hosts of SARS-like viruses (subgenus Sarbecovirus ), given that several closely related viruses have been discovered and sarbecovirus–host interactions have gained attention since SARS-CoV-2 emergence. We assessed sampling biases and modelled current distributions of bats based on climate and landscape relationships and project future scenarios for host hotspots. The most important predictors of species distributions were temperature seasonality and cave availability. We identified concentrated host hotspots in Myanmar and projected range contractions for most species by 2100. Our projections indicate hotspots will shift east in Southeast Asia in locations greater than 2°C hotter in a fossil-fuelled development future. Hotspot shifts have implications for conservation and public health, as loss of population connectivity can lead to local extinctions, and remaining hotspots may concentrate near human populations.  more » « less
Award ID(s):
2021909
PAR ID:
10398316
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1975
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pandemics originating from non-human animals highlight the need to understand how natural hosts have evolved in response to emerging human pathogens and which groups may be susceptible to infection and/or potential reservoirs to mitigate public health and conservation concerns. Multiple zoonotic coronaviruses, such as severe acute respiratory syndrome-associated coronavirus (SARS-CoV), SARS-CoV-2 and Middle Eastern respiratory syndrome-associated coronavirus (MERS-CoV), are hypothesized to have evolved in bats. We investigate angiotensin-converting enzyme 2 (ACE2), the host protein bound by SARS-CoV and SARS-CoV-2, and dipeptidyl-peptidase 4 (DPP4 or CD26), the host protein bound by MERS-CoV, in the largest bat datasets to date. Both the ACE2 and DPP4 genes are under strong selection pressure in bats, more so than in other mammals, and in residues that contact viruses. Additionally, mammalian groups vary in their similarity to humans in residues that contact SARS-CoV, SARS-CoV-2 and MERS-CoV, and increased similarity to humans in binding residues is broadly predictive of susceptibility to SARS-CoV-2. This work augments our understanding of the relationship between coronaviruses and mammals, particularly bats, provides taxonomically diverse data for studies of how host proteins are bound by coronaviruses and can inform surveillance, conservation and public health efforts. 
    more » « less
  2. Abstract Pathogen evolution is one of the least predictable components of disease emergence, particularly in nature. Here, building on principles established by the geographic mosaic theory of coevolution, we develop a quantitative, spatially explicit framework for mapping the evolutionary risk of viral emergence. Driven by interest in diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19), we examine the global biogeography of bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that are distinct from the hotspots and coldspots of host richness. Further, our framework helps explain patterns like a unique pool of merbecoviruses in the Neotropics, a recently discovered lineage of divergent nobecoviruses in Madagascar, and—most importantly—hotspots of diversification in southeast Asia, sub-Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence events. Our framework may help identify hotspots of future risk that have also been previously overlooked, like West Africa and the Indian subcontinent, and may more broadly help researchers understand how host ecology shapes the evolution and diversity of pandemic threats. 
    more » « less
  3. Lloyd-Smith, James (Ed.)
    The management of future pandemic risk requires a better understanding of the mechanisms that determine the virulence of emerging zoonotic viruses. Meta-analyses suggest that the virulence of emerging zoonoses is correlated with but not completely predictable from reservoir host phylogeny, indicating that specific characteristics of reservoir host immunology and life history may drive the evolution of viral traits responsible for cross-species virulence. In particular, bats host viruses that cause higher case fatality rates upon spillover to humans than those derived from any other mammal, a phenomenon that cannot be explained by phylogenetic distance alone. In order to disentangle the fundamental drivers of these patterns, we develop a nested modeling framework that highlights mechanisms that underpin the evolution of viral traits in reservoir hosts that cause virulence following cross-species emergence. We apply this framework to generate virulence predictions for viral zoonoses derived from diverse mammalian reservoirs, recapturing trends in virus-induced human mortality rates reported in the literature. Notably, our work offers a mechanistic hypothesis to explain the extreme virulence of bat-borne zoonoses and, more generally, demonstrates how key differences in reservoir host longevity, viral tolerance, and constitutive immunity impact the evolution of viral traits that cause virulence following spillover to humans. Our theoretical framework offers a series of testable questions and predictions designed to stimulate future work comparing cross-species virulence evolution in zoonotic viruses derived from diverse mammalian hosts. 
    more » « less
  4. Back and forth transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and animals will establish wild reservoirs of virus that endanger long-term efforts to control COVID-19 in people and to protect vulnerable animal populations. Better targeting surveillance and laboratory experiments to validate zoonotic potential requires predicting high-risk host species. A major bottleneck to this effort is the few species with available sequences for angiotensin-converting enzyme 2 receptor, a key receptor required for viral cell entry. We overcome this bottleneck by combining species' ecological and biological traits with three-dimensional modelling of host-virus protein–protein interactions using machine learning. This approach enables predictions about the zoonotic capacity of SARS-CoV-2 for greater than 5000 mammals—an order of magnitude more species than previously possible. Our predictions are strongly corroborated by in vivo studies. The predicted zoonotic capacity and proximity to humans suggest enhanced transmission risk from several common mammals, and priority areas of geographic overlap between these species and global COVID-19 hotspots. With molecular data available for only a small fraction of potential animal hosts, linking data across biological scales offers a conceptual advance that may expand our predictive modelling capacity for zoonotic viruses with similarly unknown host ranges. 
    more » « less
  5. Tully, Damien (Ed.)
    Virus host shifts are generally associated with novel adaptations to exploit the cells of the new host species optimally. Surprisingly, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has apparently required little to no significant adaptation to humans since the start of the Coronavirus Disease 2019 (COVID-19) pandemic and to October 2020. Here we assess the types of natural selection taking place in Sarbecoviruses in horseshoe bats versus the early SARS-CoV-2 evolution in humans. While there is moderate evidence of diversifying positive selection in SARS-CoV-2 in humans, it is limited to the early phase of the pandemic, and purifying selection is much weaker in SARS-CoV-2 than in related bat Sarbecoviruses . In contrast, our analysis detects evidence for significant positive episodic diversifying selection acting at the base of the bat virus lineage SARS-CoV-2 emerged from, accompanied by an adaptive depletion in CpG composition presumed to be linked to the action of antiviral mechanisms in these ancestral bat hosts. The closest bat virus to SARS-CoV-2, RmYN02 (sharing an ancestor about 1976), is a recombinant with a structure that includes differential CpG content in Spike; clear evidence of coinfection and evolution in bats without involvement of other species. While an undiscovered “facilitating” intermediate species cannot be discounted, collectively, our results support the progenitor of SARS-CoV-2 being capable of efficient human–human transmission as a consequence of its adaptive evolutionary history in bats, not humans, which created a relatively generalist virus. 
    more » « less