Abstract The exploration of 1D magnetism, frequently portrayed as spin chains, constitutes an actively pursued research field that illuminates fundamental principles in many‐body problems and applications in magnonics and spintronics. The inherent reduction in dimensionality often leads to robust spin fluctuations, impacting magnetic ordering and resulting in novel magnetic phenomena. Here, structural, magnetic, and optical properties of highly anisotropic 2D van der Waals antiferromagnets that uniquely host spin chains are explored. First‐principle calculations reveal that the weakest interaction is interchain, leading to essentially 1D magnetic behavior in each layer. With the additional degree of freedom arising from its anisotropic structure, the structure is engineered by alloying, varying the 1D spin chain lengths using electron beam irradiation, or twisting for localized patterning, and spin textures are calculated, predicting robust stability of the antiferromagnetic ordering. Comparing with other spin chain magnets, these materials are anticipated to bring fresh perspectives on harvesting low‐dimensional magnetism.
more »
« less
One dimensional wormhole corrosion in metals
Abstract Corrosion is a ubiquitous failure mode of materials. Often, the progression of localized corrosion is accompanied by the evolution of porosity in materials previously reported to be either three-dimensional or two-dimensional. However, using new tools and analysis techniques, we have realized that a more localized form of corrosion, which we call 1D wormhole corrosion, has previously been miscategorized in some situations. Using electron tomography, we show multiple examples of this 1D and percolating morphology. To understand the origin of this mechanism in a Ni-Cr alloy corroded by molten salt, we combined energy-filtered four-dimensional scanning transmission electron microscopy and ab initio density functional theory calculations to develop a vacancy mapping method with nanometer-resolution, identifying a remarkably high vacancy concentration in the diffusion-induced grain boundary migration zone, up to 100 times the equilibrium value at the melting point. Deciphering the origins of 1D corrosion is an important step towards designing structural materials with enhanced corrosion resistance.
more »
« less
- Award ID(s):
- 2145455
- PAR ID:
- 10398343
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Atomic defects underpin the properties of van der Waals materials, and their understanding is essential for advancing quantum and energy technologies. Scanning transmission electron microscopy is a powerful tool for defect identification in atomically thin materials, and extending it to multilayer and beam-sensitive materials would accelerate their exploration. Here, we establish a comprehensive defect library in a bilayer of the magnetic quasi-1D semiconductor CrSBr by combining atomic-resolution imaging, deep learning, and calculations. We apply a custom-developed machine learning work flow to detect, classify, and average point vacancy defects. This classification enables us to uncover several distinct Cr interstitial defect complexes, combined Cr and Br vacancy defect complexes, and lines of vacancy defects that extend over many unit cells. We show that their occurrence is in agreement with our computed structures and binding energy densities, reflecting the intriguing layer interlocked crystal structure of CrSBr. Our calculations show that the interstitial defect complexes give rise to highly localized electronic states. These states are of particular interest due to the reduced electronic dimensionality and magnetic properties of CrSBr and are, furthermore, predicted to be optically active. Our results broaden the scope of defect studies in challenging materials and reveal new defect types in bilayer CrSBr that can be extrapolated to the bulk and to over 20 materials belonging to the same FeOCl structural family.more » « less
-
Abstract This paper provides a comprehensive derivation and application of the nonlocal Nernst-Planck-Poisson (NNPP) system for accurate modeling of electrochemical corrosion with a focus on the biodegradation of magnesium-based implant materials under physiological conditions. The NNPP system extends and generalizes the peridynamic bi-material corrosion model by considering the transport of multiple ionic species due to electromigration. As in the peridynamic corrosion model, the NNPP system naturally accounts for moving boundaries due to the electrochemical dissolution of solid metallic materials in a liquid electrolyte as part of the dissolution process. In addition, we use the concept of a diffusive corrosion layer, which serves as an interface for constitutive corrosion modeling and provides an accurate representation of the kinetics with respect to the corrosion system under consideration. Through the NNPP model, we propose a corrosion modeling approach that incorporates diffusion, electromigration and reaction conditions in a single nonlocal framework. The validity of the NNPP-based corrosion model is illustrated by numerical simulations, including a one-dimensional example of pencil electrode corrosion and a three-dimensional simulation of a Mg-10Gd alloy bone implant screw decomposing in simulated body fluid. The numerical simulations correctly reproduce the corrosion patterns in agreement with macroscopic experimental corrosion data. Using numerical models of corrosion based on the NNPP system, a nonlocal approach to corrosion analysis is proposed, which reduces the gap between experimental observations and computational predictions, particularly in the development of biodegradable implant materials.more » « less
-
Motivated by frustrated magnets and quasi-one-dimensional magnetic materials, we study the magnetic properties of one-dimensional (1D) Ising chains with nearest-neighbor (NN) and weaker next-to-nearest-neighbor (NNN) interactions in the presence of vacancy defects. The effect of a vacancy on the magnetic susceptibility of a spin chain is twofold: it reduces the length of the chain by an effective “vacancy size” and may also act as a free spin, a “quasispin,” with a Curie-type 𝜒_{quasi}=⟨𝑆^2⟩/𝑇 contribution to the susceptibility. In chains with antiferromagnetic short-range order, the susceptibility of vacancy-free chains is exponentially suppressed at low temperatures, and quasispins dominate the effect of impurities on the chains' magnetic properties. For chains with antiferromagnetic NN interactions, the quasispin matches the value ⟨𝑆^2⟩=1 of the Ising spins in the chain for ferromagnetic NNN interactions and vanishes for antiferromagnetic NNN interactions. For chains with ferromagnetic short-range order, quasispin effects are insignificant due to exponentially large low-temperature susceptibilities, and the dominant effect of a vacancy is effectively changing the length of the chain.more » « less
-
Abstract The rapid solidification associated with additive manufacturing (AM) leads to complex microstructures with peculiar features amongst which cellular solidification structures are the most remarkable. These metastable structures possess a clear segregation pattern dictated by the solidification pathway of the alloy and are bounded by dislocation walls. While they confer exceptional strength and ductility to AM 316L stainless steel, their effect on localized corrosion in chloride environments remains to be established. Here, we employ correlative electron microscopy to reveal coupled chemical, electrochemical, and crystallographic effects on localized corrosion attack and its development. We show that the Cr and Mo-depleted interior of the cellular solidification structures dissolves selectively, giving rise to an intricate damage morphology, that is directly related to the underlying crystallographic orientation. Whereas surface observations only reveal apparently shallow micrometer-size cavities, 3D tomography via focused ion beam serial-sectioning shows a high degree of connectivity between these features underneath the surface. We reveal this intricate morphology, propose a formation mechanism, and discuss alloy design guidelines to mitigate this phenomenon.more » « less
An official website of the United States government
